

ADwin-X-A20 Manual

For any questions, please don't hesitate to contact us:

Hotline:	-
Fax:	-
E-Mail:	i
Internet	v

+49 6251 96320 +49 6251 5 68 19 info@ADwin.de www.ADwin.de

Jager Computergesteuerte Messtechnik GmbH Rheinstraße 2-4 D-64653 Lorsch Germany

Table of Contents

Table of Contents III
1 Typografische KonventionenV
1 Information about this Manual1
2 System description
3 Operating Environment
4 Initialization of the Hardware
5 Overview Inputs and Outputs
6 X-A20 Basic 11 6.1 Multi-color LED. 11 6.2 Analog inputs, 18-bit 11 6.3 Analog outputs, 12-bit 14 6.4 Analog outputs, 12-bit 14 6.5 TTL digital channels DIO39:DIO32 15 6.6 Event Input 15 6.7 LS-Bus 16 6.8 Synchronous Actions 16
7 Option CO1
8 Option D 18 8.1 Diff. digital channels DIO47:DIO40 18 8.2 Diff. counters 4, 5 18 8.3 SSI interface 19
9 Option DCT 21 9.1 TTL-digital channels DIO31:DIO00 21 9.2 Comparator inputs DIO59:DIO48 21 9.3 Edge control and Edge output 22 9.4 TTL Counters 2, 3 22 9.5 Comparator Counters 6, 7 23
10 Option COM

Table of Contents

ADwin

11 Option Profibus	27
12 Option Profinet-IRT	30
13 Option EtherCAT	34
14 Option Boot	37
15 Counter block	40 41
16 Software 16.1 General instructions 16.2 Analog Inputs and Outputs 16.3 Digital Inputs and Outputs 16.4 Counter 16.5 SSI interface 16.6 CAN interface 16.7 RSxxx Interface 16.8 Profibus interface 16.9 Profinet interface 16.10 EtherCAT interface	46 53 77 . 110 . 127 . 135 . 146 . 152 . 156
Annex A.1 Technical Data. A.2 Hardware revisions A.3 RoHS Declaration of Conformity	. A-1 . A-6

1 Typografische Konventionen

Das "Achtung"-Zeichen steht bei Informationen, die auf Folgeschäden durch Fehlbedienung an der Hard- oder Software, am Messaufbau oder an Personen hinweisen.

Einen "Hinweis" finden Sie bei

Dwin

- Informationen, die f
 ür einen fehlerfreien Betrieb unbedingt beachtet werden m
 üssen.
- Tipps und Ratschlägen für einen effizienten Betrieb.

Das Zeichen "Information" verweist auf weiterführende Informationen in dieser Dokumentation oder andere Quellen wie Handbücher, Datenblätter, Literatur etc.

Dateinamen und -verzeichnisse sind in spitzen Klammern und im Schrifttyp Courier New angeben.

Programmanweisungen und Benutzer-Eingaben sind durch den Schrifttyp Courier New gekennzeichnet.

Elemente eines Quelltextes wie Befehle, Variablen, Kommentar und sonstiger Text werden im Schrifttyp Courier New und farbig dargestellt.

In einem Datenwort (hier: 16 Bit) werden die Bits wie folgt nummeriert:

Bit-Nr.	15	14	13		1	0
Wert des Bits	2 ¹⁵	2 ¹⁴	2 ¹³		2 ¹ =2	2 ⁰ =1
Bezeichnung	MSB	-	-	-	-	LSB

Var 1

1 Information about this Manual

ADwin

This manual contains complex information about the operation of the *ADwin-X-A20* system. Additional information are available in

 the manual "ADwin Installation", which describes all interface installations for the *ADwin* systems.

With this manual, you begin your installation!

- the description of the configuration program *ADconfig*, with which you initialize the communication from the corresponding interface to your *ADwin-X-A20* system.
- the manual ADbasic, which explains basic instructions for the compiler ADbasic and the functional layout of the ADwin system.

The online help of ADbasic contains the same information.

- the manuals for all current development environments containing the description of installation and instructions.
- installation and instruction manuals for drivers of all popular development environments
- the manual "ADwin HSM-24V" which describes a module for the LS bus.

Please note: This manual is still in progress, errors can be contained.

Please note:

For *ADwin* systems to function correctly, follow strictly the information provided in this documentation and in other mentioned manuals.

Programming, start-up and operation, as well as the modification of program parameters must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience and training as well as their knowledge of applicable technical standards, guidelines, accident prevention regulations and operating conditions, have been authorized by a quality assurance representative at the site to perform the necessary acivities, while recognizing and avoiding any possible dangers. (Definition of qualified personnel as per VDE 105 and ICE 364).

This product documentation and all documents referred to, have always to be available and to be strictly observed. For damages caused by disregarding the information in this documentation or in all other additional documentations, no liability is assumed by the company *Jäger Computergesteuerte Messtechnik GmbH*, Lorsch, Germany.

This documentation, including all pictures is protected by copyright. Reproduction, translation as well as electronical and photographical archiving and modification require a written permission by the company *Jäger Computergesteuerte Messtechnik GmbH*, Lorsch, Germany.

OEM products are mentioned without referring to possible patent rights, the existence of which may not be excluded.

Hotline address: see inner side of cover page.

Availability of the documents

Qualified personnel

Subject to change.

	2 System description
	2.1 ADwin system concept
	ADwin systems guarantee fast and accurate operation of measurement data acquisition and automation tasks under real-time conditions. This offers an ideal basis for applications such as:
	 very fast digital closed-loop control systems
	 very fast open-loop control systems
	 data acquisition with very fast online analysis of the measurement data
	 monitoring of complex trigger conditions and many more
	<i>ADwin</i> systems are optimized for processes, which need very short process cycle times of one millisecond down to some microseconds.
System features	The ADwin system is equipped with analog and digital inputs and outputs, a fast pro- cessor (32-bit or 64-bit floating-point signal processor) and local memory. The proces- sor is responsible for the whole real-time processing in the system. The applications run independent of the PC and its workload.
Processor	The processor of the ADwin system processes each measurement value at once.
	In one cycle, you can acquire the status of the inputs, process the status with the help of any mathematical functions, and react to the results, even at very fast process cycle times of some microseconds. This results in a perfect and logical work sharing: The PC executes a program for visualizing of data, for input and operation of the processes, togeher with access to networks and data bases, while the processor of the <i>ADwin</i> sys- tem executes all tasks, which require real-time processing concurrently.
Real-time operating system	The operating system for the DSP of the <i>ADwin</i> system has been optimized to achieve the fastest response times possible. It manages parallel processes in a multitasking environment. Low priority processes are managed by time slicing. Specified high prior- ity processes interrupt all low priority processes and are immediately and completely executed (preemptive multitasking). High priority processes are executed as time-con- trolled or event-controlled processes (external trigger).
Timing	The built-in timer is responsible for the precise scheduling of high priority processes. It has a resolution of 25 nanoseconds (3,3ns since processor T11). The <i>ADwin</i> systems are characterized by an extremely short response time of only 300 nanoseconds during the change from a low to a high priority process. A continuously running communication process enables a continuous data exchange between the <i>ADwin</i> system and the PC even while applications are active. The communication has no influence on the real-time capability of the <i>ADwin</i> system, even so, it is possible to exchange data at any time.
ADbasic	The real-time development tool <i>ADbasic</i> gives the opportunity to create time-critical programs for <i>ADwin</i> systems very easily and quickly. <i>ADbasic</i> is an integrated development environment under Windows with possibilities of online debugging. The familiar, easy-to-learn BASIC instruction syntax has been extended by many more functions, in order to allow direct access to inputs and outputs as well as by functions for process control and communication with the PC.

Communication between ADwin system and PC

The *ADwin* system is connected to the PC via an **USB or Ethernet** interface. After power-up the *ADwin* system is booted from the PC via this interface. Afterwards the *ADwin* operating system is waiting for instructions from the PC, which it will process.

There are two kinds of instructions: On the one hand instructions, which transfer data from the PC to the *ADwin* system, for instance "load process", "start process" or "set parameter", on the other hand instructions, which wait for a response from the *ADwin* system, for instance "read variables" or "read data sets". Both kinds of instructions are processed immediately by the *ADwin* system, which means immediate and complete responses. The *ADwin* system never sends data to the PC without request! The data transfer to the PC is always a response to an instruction coming from the PC. Thus, embedding the *ADwin* system into various programming languages and standard software packages for measurements is held simple, because they have only to be able to call functions and process the return value.

Under Windows 95/98/NT/ME/2000/XP/Vista, you can use a **DLL** and an **ActiveX** interface. On this basis the following drivers for **development environments** are available: .NET, Visual Basic, Visual-C, C/C++, Delphi, VBA (Excel, Access, Word), TestPoint, LabVIEW / LabWINDOWS, Agilent VEE (HP-VEE), InTouch, DIAdem, DASYLab, SciLab, MATLAB.

Versions for Linux, Mac OS and Java are available, too.

The simple, instruction-oriented communication with the *ADwin* system enables several Windows programs to access the same *ADwin* system in coordination at the same time. This is of course a great advantage when programs are being developed and installed.

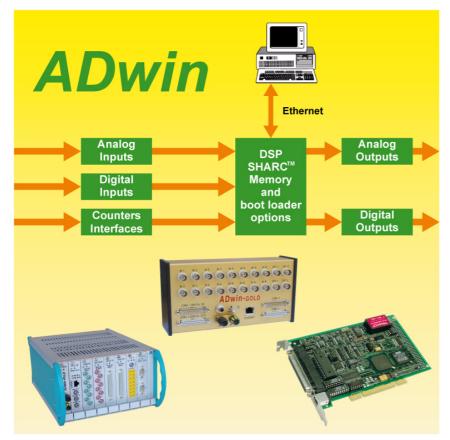
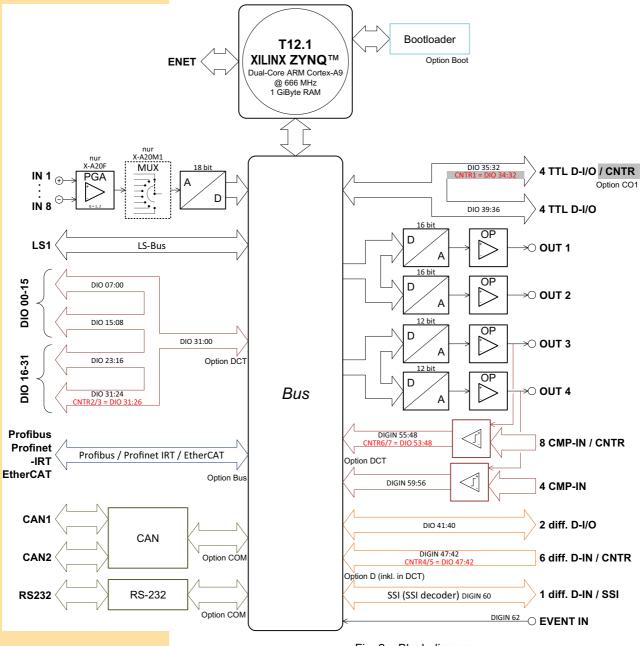


Fig. 1 – Concept of the *ADwin* systems

2.2 ADwin-X-A20

ADwin-X-A20 is euqipped with the digital **signal processor** XILINX ZYNQ[™] with Dual-Core ARM Cortex-A9 (666MHz), which processes 64 bit float and 32 bit integer. It is responsible for the complete measurement data acquisition, online processing, and signal output, and makes it possible to instantaneously process sample rates in the range of 200 Kilohertz to 1 Megahertz. **Prozessor und Speicher**

Software interfaces


The **memory 1 GiB** is large enough for all tasks and even bulk data. An integrated cache memory allows very short access time and holds the complete *ADwin* operating system, *ADbasic* processes and all variables.

In order to get maximum access times, all inputs and outputs are memory-mapped in the external memory section of the DSP.

The number and function of inputs and outputs differ according to the selected variant of X-A20. The following text describes all available functions.

Analog inputs

The system has 8 analog inputs (differential) on a DSub connectors. The input signals are converted by a 18-bit analog-to-digital converter (ADC), see Fig. 2 "Block diagram". According to the *ADwin-X* version, the sampling sequence converts the digital value of one channel (X-A20-M1) or of up to 8 channels synchronously (X-A20-F).

Analog outputs

Fig. 2 – Block diagram

ADwin-X-A20 is equipped with **2** analog outputs of **16-bit resolution** with an output voltage range of -10V ... +10V. You can synchronize the voltage output of all DACs via software. The output signal is smoothed by a low-pass filter with a cut-off frequency of $f_g = 700$ kHz.

There are also **2** analog outputs with **12-bit resolution**, conversion rate 1ms. The output signals are internally used for comparator inputs and counters.

System description

32 digital inputs or outputs are available on D-Sub connectors. They can be pro- grammed in groups of 8 as inputs or outputs. The inputs or outputs are TTL-compatible.	Digital inputs and outputs
D-Sub connectors provide a range of 8 to 61 digital inputs and outputs , according to the <i>ADwin-X</i> version. Generally, the digital channels are TTL-compatible, but there are also 8 differential channels and 8 comparator inputs. Most channels can be programmed in groups as inputs or outputs, but some are already fixed. Partly, digital channels have double allocation and are also used as counter inputs.	
Using a FIFO, an edge control of digital inputs is available. With digital outputs, FIFOs allow to output edges at specified points in time.	
There are overall 7 counter blocks with 32-bit; a counter block provides one up/down counter and one PWM counter. Counter blocks are equal in function but can process different inputs signals: TTL-like signals, differential signal, comparator signals.	Counters
<i>ADwin-X-A20</i> has a trigger input (EVENT, see also page 15). Processes can be trig- gered by a signal and are completely processed afterwards. (see <i>ADbasic</i> manual, chapter "Processes in the <i>ADbasic</i> System").	Trigger input (EVENT)
Using the LS bus interface (see page 16), up to 15 LS bus modules can be addressed. The LS bus module HSM-24V provides 32 digital channels for 24 Volt signals.	24 Volt signals
There are interfaces for CAN (High Speed), RS232, SSI, Profibus, Profinet-IRT, and EtherCAT. More interfaces are available on request.	Schnittstellen
The Bootloader starts a previously programmed application automatically after power- up. After installation of this application, an operation without computer is possible.	Bootloader
The standard delivery items for ADwin-X-A20:	Standard delivery
 Hardware ADwin-X-A20 (Design and Functions as ordered). 	
 Cross-over Ethernet cable, length 1.8 meters. 	
 Three-pole power supply cable with one power supply plug, length 1.0 meters. 	
The open cable end is used for connection to the external power supply (self-as- sembly); see appendix for power supply characteristics.	
 ADwin software package. 	
 Manual "Driver Installation". 	
- This manual.	
2.2.1 Design	
ADwin-X-A20 is available in the following designs:	
 Standard: Metal enclosure as desktop unit. 	
 A20-R: Metal enclosure for installation in 19" racks. All +Bus options (PROFI- BUS, PROFINET, ECAT, see below) are not available. 	

2.2.2 Functions

ADwin-X-A20 as basic version is available as *X-A20-M1* or *X-A20-F*. The basic version can be combined with any of several opptions.

Option	IS	Functions	Page
X-A20 Basic		8 analog inputs, 18-bit 2 analog outputs, 16-bit 2 analog outputs, 12-bit	page 11
		8 TTL digital channels 1 Event input	page 11
		1 LS bus interface	page 16
	M1	Analog inputs with multiplexer: 1 measurement value per conversion, 200kHz.	
	F	Analog input, fast: up to 8 measurement values converted synchronously, 200kHz800kHz; gain selectable.	
+CO1		1 TTL counter block: 32-bit up/down counter and PWM counter	page 17
+DCT		32 TTL digital channels	page 21
(inklus	ive D)W	12 comparator inputs	
		2 TTL counter blocks: 32-bit up/down counter and PWM counter	
		2 comparator counter blocks: 32-bit up/down counter and PWM counter	
		Input FIFO and output FIFO for digital channels	
	+D	6 diff. digital inputs + 2 diff. digital channels	page 18
		2 differential counter blocks: 32-bit up/down counter and PWM counter	
		1 SSI interface	
+COM		2 CAN interfaces (high speed)	page 24
1 RS		1 RS232 interface	
+Bus	+PROFI- BUS	1 Profibus interface (Slave)	page 27
	+PROFI- NET	1 Profinet-IRT interface (Slave)	page 30
	+ECAT	1 EtherCAT-Schnittstelle (Slave)	page 34
+Boot		Flash EPROM bootloader for independent pro- cessing without PC	page 37

Option DCT is expansion of option D, so these two options cannot be combined. Options PROFIBUS, PROFINET, and ECAT cannot be combined.

2.2.3 Accessories

For ADwin-X-A20, the supplementary accessories are availabe:

- ADbasic, real-time development tool for all ADwin systems.
- A20-Mount: A20 mount: Housing for DIN rail mounting in a switch cabinet with insulated clips.
- A20-Pow: external power supply.
- A20-Pow-Mount: external power supply for DIN rails.
- HSM-24V: DIN rail module for LS bus interface, 32 digital I/Os, 24V level, configurable in groups of 8, screw terminals.

3 Operating Environment

With the necessary accessories, the system can be operated in 19-inch-enclosures or as a mobile system (e.g. in cars).

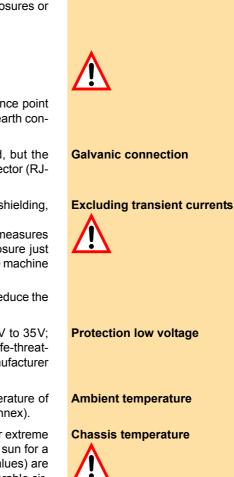
The ADwin-X-A20 device must be earth-protected, in order to

- build a ground reference point for the electronic
- conduct interferences to earth.

Connect the GND plug, which is internally connected with the ground reference point and the enclosure, via a short low-impedance solid-type cable to the central earth connection point of your device.

The data lines at the version with Ethernet interface are optically isolated, but the ground potentials are connected, because the shielding of the Ethernet connector (RJ-45) is connected to GND.

Transient currents, which are conducted via the aluminum enclosure or the shielding, have an influence on the measurement signal.


Please, make sure that the shielding is not reduced, for instance by taking measures for bleeding off interferences, such as connecting the shielding to the enclosure just before entering it. The more frequently you earth the shielding on its way to the machine the better the shielding will be.

Use cables with shielding on both ends for signal lines. Here too, you should reduce the bleeding off of interferences via the enclosure by using screen clips.

The *ADwin-X-A20* is externally operated with a protection low voltage of 10V to 35V; internally it is operated with a voltage of +5V and $\pm 15V$ against GND. It is not life-threatening. For operation with an external power supply, the instructions of the manufacturer applies.

The *ADwin-X-A20* is designed for operation in dry rooms with a room temperature of $+5^{\circ}$ C ... $+50^{\circ}$ C and a relative humidity of 0 ... 80% (no condensation, see Annex).

The temperature of the chassis (surface) must not exceed +60°C, even under extreme operating conditions – e.g. in an enclosure or if the system is exposed to the sun for a longer period of time. You risk damages at the device or not-defined data (values) are output, which can cause damages at your measurement device under unfavorable circumstances.

	4 Initialization of the Hardware
(P)	If you start initializing do not connect any cables to the <i>ADwin-X-A20</i> before you have executed the following steps:
	1. Software installation / installation in PC or 19" enlosure
	Follow the manual "ADwin Driver Installation".
	2. Set the operating environment, see chapter 3.
	3. Read chapter 5 "Overview Inputs and Outputs" in this manual.
	4. Begin now with the connection of the inputs and outputs.
	Notes
Providing the power supply	Please pay attention that reliable power source is supplied. This concerns the computer (standard delivery). Otherwise also the external power supply, if operated in a car, the battery voltage. If using current-limiting power supplies, please pay attention to the fact, that after power-up the current demand can be a multiple of the idle current. More detailed infor- mation can be found in the Technical Data (Annex).
	In case of a power failure, all data, which have not been saved are lost. Not-defined data (values) can under unfavorable circumstances cause damages to other equipment. Avoid direct contact to uninsulated parts to be secure of electrostatic charging.
	Checking the Connection
Booting	Start ADbasic and boot the ADwin system by clicking on the boot button B.
Programs with <i>ADbasic</i>	ADbasic - [ADbasic1] File Edit Yiew Build Options Debug Tools Window Help Image: Ima

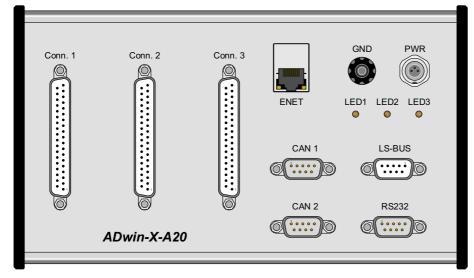
5 Overview Inputs and Outputs

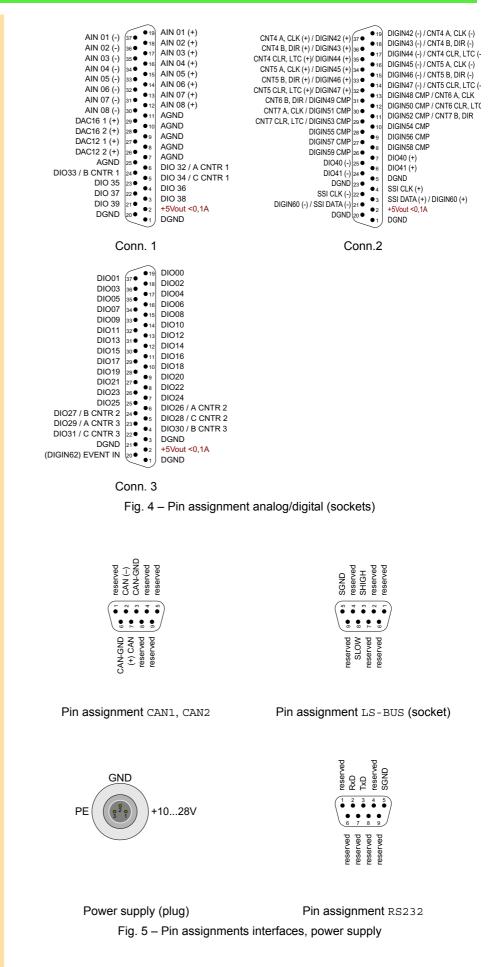
ADwin-X-A20 provides the following inputs and outputs (Pin assignment see next page). According to the built-in optionsm, only some of the pins may be used.

- Ethernet connector
- Power supply connector
- GND connector
- 3 D-Sub sockets, 37-pole: Conn. 1, Conn. 2, Conn. 3
 - analog inputs, analog outputs
 - · digital inputs and outputs: TTL, differential, comparator
 - inputs for counters: TTL, differential, comparator
 - SSI interface
 - digital trigger input (Event)
 - power output +5V

Some pins have double assignments.

- 2 D-Sub plugs 9-pole, CAN1, CAN2
- 1 D-Sub plug 9-pole, RS232
- 1 D-Sub socket 9-pole, LS-BUS




Fig. 3 – Connectors of ADwin-X-A20

All inputs and outputs may only be operated according to the specifications given (see Annex A.1 Technical Data). In case of doubt, ask the manufacturer of the device, to which you want to connect *ADwin-X-A20*.

Open-ended inputs can cause errors - above all in an environment where interferences may occur. For your safety, set the inputs, which you do not use to a specified level (for instance GND) and also connect them as close to the connector as possible. Don't connect open ended cables to the inputs; open ended cables may cause spikes at the inputs.

The event input is an exception, it has an internal pull-up resistor (4.7 k Ω).

6 X-A20 Basic

The basic version of X-A20 comprises:

- 3 Multi-color LED
- 8 Analog inputs, 18-bit
 - X-A20-M1: Multiplexer
 - X-A20-F: Synchronous conversion
- 2 Analog outputs, 12-bit
- 2 Analog outputs, 16-bit
- 8 TTL digital channels DIO39:DIO32
- 1 Event Input
- 1 LS-Bus
- Synchronous Actions

6.1 Multi-color LED

X-A20 provides 3 multi-color LEDs, which you can switch on and off.

After power-up, LED 1 serves as status LED and glows red; as soon as boot processing has finished, Process 15 is running and makes LED 1 blink green.

Instructions to program LEDs are described starting from page 47 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions
Check LED status	Check_LED
Switch LED on or off, set color	Set_LED

6.2 Analog inputs, 18-bit

X-A20 provides 8 differential analog measuring inputs, which run via a 18-bit analog digital converter (ADC). There are two variants:

X-A20-M1: Multiplexer

The 8 analog measuring inputs are allocated to a multiplexer and from there connected to a 18-bit-ADC. The conversion time is $5\mu s$ (including multiplexer settling time). The gain factor is set to 1.

- X-A20-F: Synchronous conversion

Up to 8 analog measuring inputs are converted synchronously. The gain (PGA) is programmable to 1 or 2. The conversion time (for all channels together) depends on the number of converted channels:

- 1 channel: max. 800kHz = 1.25µs.
- 2 channels: max. 550kHz = 1.82µs.
- 3 channels: max. 425kHz = 2.35µs.
- 4 channels: max. 350kHz = 2.86µs.
- 5 channels: max. $300 \text{ kHz} = 3.3 \mu \text{s}$.
- 6 channels: max. 250 kHz = 4.0 µs.
- 7 channels: max. 225kHz = 4.44µs.
- 8 channels: max. 200 kHz = 5 μ s.

If you select different channels with a conversion instruction (ADC... / Start_Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels.

The input voltage range is $\pm 10V$ (with gain factor 1).

The analog inputs are differential.For each of the measurement inputs there is a positive and a negative input, between them the voltage difference is measured (but not free of potential). Both, the positive and negative input have to be connected, see Fig. 4 – Pin assignment analog/digital (sockets).

Please note, that the inputs do need a mass connection between the system's GNDplug and the signal source. This is in addition to the connections to the positive and negative input.

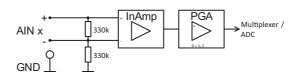


Fig. 6 - Input circuitry of an analog input

Signals are converted fast and accurately (76µV) with the 18-bit analog-to-digital-converter (ADC). Measurement values can be returned with 16 bit or 24 bit resolution.

Please note the Calculation Basics for evaluation of measurement values.

With X-A20-F there are two alternative options to convert measurement values. With X-A20-M1 both methods are available, but only with a single channel:

- Single conversion: The conversion of one or several channels is started at a defined time and the measurement value(s) is returned in the appropriate time. Each conversion has to be started on its own.
- Continuous conversion: A sequential control continuously converts measurment values on one or several selected channels. You can read the current value without waiting, but the exact time of conversion is unknown. Thus, the processor can be discharged a lot and only has to read completely converted values from the sequential control's buffer.

X-A20 must be earth-protected, in order do measurements free of interference. Connect the GND plug via a short low-impedance solid-type cable to the central earth connection point of your device.

The enclosure is connected to GND via the GND wire of the power supply cable as well as via the shiedling of the Ethernet cable.

The power supply via the power adapter at the PC links the ground potential of the ADwin-X-A20 with the PC. A voltage difference between ground potentials interferes with operation and can change measurements or cause considerable damage. Avoid disturbances by using an external power supply.

The standard instruction ADC () processes a complete measurement with the ADC on one channel (see page 58) and returns a 16-bit value.

You get measurement values with 18-bit resolution with the instruction ADC24 (see page 59); the value is returned as a 24-bit value (see page 16).

Both instructions use the 18-bit-ADC, only the return values have different formats.

Please pay attention to a low output resistance of the signal source (of the input signals), because it may have influence on the measuring accuracy. If this is not possible:

Depending on the output resistance a linear error is caused (about 1 digit per 10Ω).

You can compensate this by multiplying the measurement value with a corresponding factor and get a sort of re-calibration.

Instructions to program analog inputs (both X-A20-M1 and X-A20-F) are described starting from page 58 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions	-M1	-F
Do a complete conversion	ADC, ADC24	х	х
Do conversions on several channels	ADC2, ADC4, ADC8 ADC_2_24, ADC4_24 ADC8_24	-	х
Do a measurement in steps, start contin- uous measurement	Start_Conv, Wait_EOC Read_ADC, Read_ADC24	х	х
Set gain (and start conversion)	Start_Conv_PGA	-	х
Read several measurement values at the same time (measurement in steps)	Read_ADC_Packed Read_ADC8 Read_ADC8_24	-	х
Start several functions synchronously.	Sync_All	Х	Х

Earth protection

Standard instruction

Programming

6.2.1 Calculation Basics

The voltage range of the *ADwin-X-A20* at the analog inputs and outputs is between -10V to +10V or bipolar 10V.

The 65536 (2^{16}) digits are allocated to the corresponding voltage ranges of the ADCs and DACs so that 1

- 0 (zero) digits correspond to the maximum negative voltage and
- 65535 digits correspond to the maximum positive voltage

The value for 65536 digits, exactly +10 Volt, is just outside the measurement range, so that you will get a maximum voltage value of +9.999695V for a 16-bit conversion.

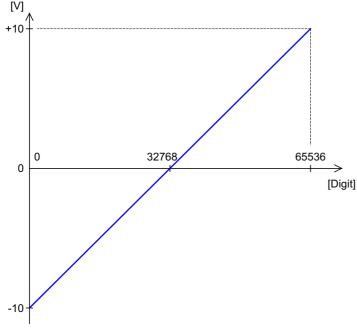


Fig. 7 – Zero offset in the standard setting of bipolar 10 Volts

In the bipolar setting, you will get a zero offset, also called offset $\mathsf{U}_{\mathsf{OFF}}$ in the following text.

For the voltage range of -10V ... +10V applies: $U_{OFF} = -10V$

X-A20-F has a programmable gain (PGA), which can amplify the input voltage by the factors 1 (\pm 10V) or 2 (\pm 5V). The gain factor also changes the measurement range. Please note that with a gain factor k_V=2, interference signals are amplified respectively.

The quantization level (U_{LSB}) is the smallest digitally displayable voltage difference and is equivalent to the voltage of the least significant bit (LSB).

The measured value of the 18-bit ADC can be returned with 16-bit or with 24-bit format. The DACs process values with 12 bit and 16 bit:

- 24-bit format: The 24-bit value holds the 18-bit measurement value in the bits 23:6, the measurement value being shifted by 6 bits to the left, the bits 5:0 are always zero.
- $\begin{array}{l} \quad U_{LSB\ 24bit} = 20 \mbox{ V}\ /\ 2^{24} = 1.19 \mbox{ } \mu \mbox{ V} \\ 16\mbox{-bit format: The measurement value is given in the lower word (bits 15:0), the upper word is zero. \\ U_{LSB\ 16bit} = 20 \mbox{ V}\ /\ 2^{16} = 305.175 \mbox{ } \mu \mbox{ V} \end{array}$

The same applies for a DAC value to be output.

Voltage range

Gain factor k,

Quantization level ULSB

Allocation of digits to voltage

1. With a 24-bit value, $16777216 (2^{24})$ digits are allocated to the voltage range.

A digital value for a 12-bit DAC is also given in the 16-bit format, left-aligned in the lower word, bits 3:0 are always zero.

Bit no.	31:24	23:16	15:6	5:4	3:0
Inhalt	0	18-bit value in bits 23:6)	
	0	0	16-bit value in bits 15:0		
	0	0	12-bit value in bits 15:4	4	0

Fig. 8 – Storage of the ADC/DAC bits in the memory

Values in the same bit format can be added or subtracted directly, which here applies to 12-bit and 16-bit values. To calculate values with different formats, the more accurate 24-bit value must be shifted 8 bits to the right or the 16-bit value to the left.

Conversion Digit to Voltage

For a DAC (16-bit format):

DAC

 $U_{OUT} = Digits \cdot U_{LSB} + U_{OFF}$ Digits = $\frac{U_{OUT} - U_{OFF}}{U_{LSB}}$

ADC

INL

DNL

For an ADC (either 24-bit and 16-bit format):

Digits =
$$\frac{k_{v} \cdot U_{IN} - U_{OFF}}{U_{LSB}}$$
$$U_{IN} = \frac{\text{Digits} \cdot U_{LSB} + U_{OFF}}{k_{v}}$$

Tolerance Ranges

Slight variations regarding the calculated values may be within the tolerance range of the individual component. Two kinds of variations are possible (in LSB), which are indicated in this hardware manual:

- The integral non-linearity (INL) defines the maximum deviation from the ideal straight line over the whole input voltage range (see Fig. 8, page 13).
- The differential non-linearity (DNL) defines the maximum deviation from the ideal quantization level.

6.3 Analog outputs, 12-bit

ADwin-X-A20 has 2 analog outputs with 12-bit converters (DAC12-1, DAC12-2), see page 10. Each output has a digital analog converter (DAC).

The DAC has a max. conversion time of 1000 µs.

The 12-bit ADCs are internally connected to the comparator inputs DIO59:DIO48 (see Option DCT, page 21). The set DAC voltage serves as comparator signal (0V...5V), i.e. a given digital signal with a lower voltage is processed as level Low, with a higher voltage as level High.

Please note the Calculation Basics for processing of DAC values.

Programming

There is a single instruction to program analog outputs, as described on page 55 and
in the online help. Instructions are defined in the include file ADwin-X.inc.

Function	Instructions
Output voltage	DAC12

6.4 Analog outputs, 16-bit

ADwin-X-A20 has 2 analog outputs with 16-bit converters (DAC16-1, DAC16-2), see page 10. Each output has its own digital analog converter (DAC).

The DAC has a conversion time of 1µs.

Please note the Calculation Basics for processing of DAC values.

Instructions to program analog outputs are described starting from page 55 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions	
Output voltage	DAC	
Output voltage in steps	Write_DAC	
	Start_DAC	
Start several functions synchronously.	Sync_All	

6.5 TTL digital channels DIO39:DIO32

8 digital channels (DIO39:DIO32) are available on D-Sub socket Conn. 1, see page 10. The channels are programmable in groups of 4 as inputs or outputs.

The channels DIO34:DIO32 can be also assigned as counter inputs (see Option CO1). In this case only one of the functions (digital channel or counter input) can be used.

The digital channels are TTL-compatible and not protected against over voltage. Inputs have a pull-down-resistor ($10k\Omega$).

Programming

Programming

Instructions to program digital channels are described starting from page 78 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions
Configure channels	Conf_DIO
Configure input filter	Digin_Filter_Init
Read input values.	Digin, Digin_Long2
Control edges of digital inputs.	Digin_Edge2
Set digital outputs.	Digout Digout_Long2 Digout_bits2 Get_Digout_Long2
Read and set values via latch register.	Dig_Latch Digin_Read_Latch2 Digout_Write_Latch2
Use output Fifo (with Option DCT only).	Digout_Fifo_Read_Timer Digout_Fifo_Clear Digout_Fifo_Enable Digout_Fifo_Empty Digout_Fifo_Mode Digout_Fifo_Start Digout_Fifo_Write
Use input Fifo (with Option DCT only).	Digin_Fifo_Read_Timer Digin_Fifo_Clear Digin_Fifo_Enable Digin_Fifo_Full Digin_Fifo_Read
Start several functions synchronously.	Sync_All

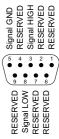
6.6 Event Input

ADwin-X-A20 provides an external trigger input (EVENT) on pin 20 of the D-Sub socket Conn. 3, see Fig. 4 – Pin assignment analog/digital (sockets).

An external trigger signal with rising edge at the event input can start a process cycle being completely and immediately processed, (see also *ADbasic* manual, chapter: "Processes in the ADwin System").

With the instruction **CPU_Event_Config**, you can configure which edges at the event input trigger a process cycle.

The event input has an internal pull-down resistance $(4.7 k\Omega)$.


The level of the event input can be read via software as digital input DIGIN62.

6.7 LS-Bus

ADwin-X-A20 provides one interface for LS bus on a 9-pin DSub connector LS-BUS.

The LS bus is a bi-directional serial bus with 5MHz clock rate (Low Speed). The bus is a in-house-design to access external modules. The first module available is HSM-24V, which can process 24 Volt signals on 32 digital channels.

The bus is set up as line connection, i.e. the *ADwin* interface and up to 15 LS bus modules are connected to each other via two-way links. The last module of the LS bus must have the bus termination activated. The maximum bus length is 5m.

The LS bus modules are programmed with *ADbasic* instructions, which are sent via the LS bus interface of the *ADwin* system. The instructions for the LS bus module are described in the manual of the LS bus module and in the online help.

Programming

Instructions to program LS bus modules are described starting from page 164 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions
Initialize LS bus module	LS_DIO_Init
Set and read digital channels on the LS bus module 1	LS_Dig_IO (no other instructions usable)
Output digital signals	LS_Digout_Long LS_Digout_Long_BS
Read digital signals	LS_Digin_Long LS_Digin_Long_BS
Read over-current status from module outputs	LS_Get_Output
Reset interface	LS_Reset
Use LS bus watchdog	LS_Watchdog_Init LS_Watchdog_Reset

6.8 Synchronous Actions

ADwin-X-A20 enables to synchronously start actions at different innputs and outputs with the instruction **Sync_A11**. The instruction is desribed on page 51.

The following actions are available (according to the version): read and output analog signals, read and output digital signals, start edge output / edge detection on digital channels, copy counter values, reset counters, read SSI signal.

7 Option CO1

Option X-A20-CO1 additionally provides a TTL counter block with number 1.

The counter inputs are on the pins DIO34:DIO32 on DSub socket Conn. 1., see fig. 4 on page 10.

The pins have a double allocation as digital channels, see TTL digital channels DIO39:DIO32. The channels must be configured as digital inputs with Conf_DIO to enable the usage as counter inputs.

The counter inputs A/CLK, B/DIR, and CLR/LATCH are TTL compatible and are not protected against over-voltage.

All functions of counter block 1 are described in chapter 15 "Counter block".

Instructions to program counters are described starting from page 111 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions
Configure channels as inputs.	Conf_DIO
Clear counter.	Cnt_Clear
Disable or enable counter (please note already running counters).	Cnt_Enable Cnt_PW_Enable
Read out status register.	Cnt_Get_Status
Write counter value into Latch A.	Cnt_Latch
Write counter value into latch A and read the latch value.	Cnt_Sync_Latch
Set counter operation mode.	Cnt_Mode
Read latch value.	Cnt_Read
Return the content of a counter register.	Cnt_Read_Latch
Set counter mode to single ended / differential inputs.	Cnt_Read_Int_Register
Write PWM counter values into latch A.	Cnt_PW_Latch
Read frequency and duty cycle of a PWM counter.	Cnt_Get_PW
Read high time and low time of a PWM counter.	Cnt_Get_PW_HL
Start several functions synchronously.	Sync_All

8 Option D

Option X-A20-D additionally provides:

- 8 Diff. digital channels DIO47:DIO40
- 2 Diff. counters 4, 5
- 1 SSI interface

8.1 Diff. digital channels DIO47:DIO40

8 differential digital channels (DIGIN47:DIGIN42, DIO41:DIO40) are available on D-Sub socket Conn. 2, see fig. 4. The channels DIO41:DIO40 are each programmable as input or output, all other channels are set as inputs.

The channels DIGIN47:DIGIN42 can be also assigned as counter inputs (see Diff. counters 4, 5). In this case only one of the functions (digital channel or counter input) can be used.

The digital channels are differential and not protected against over-current. For each channel there is a positive and a negative pin, between which the voltage difference is measured (but not free of potential). Between each pair of channel pins, there is a bus termination of 120Ω .

The inputs require TTL-like signals.

Instructions to program digital channels are described starting from page 78 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions	
Configure channels	Conf_DIO	
Configure input filter	Digin_Filter_Init	
Read input values.	Digin, Digin_Long2	
Control edges of digital inputs.	Digin_Edge2	
Set digital outputs.	Digout Digout_Long2 Digout_bits2 Get_Digout_Long2	
Read and set values via latch register.	Dig_Latch Digin_Read_Latch2 Digout_Write_Latch2	
Start several functions synchronously.	Sync_All	

8.2 Diff. counters 4, 5

Option X-A20-D additionally provides two differential counters with numbers 4 and 5. The counter inputs are on the pins DIGIN47:DIGIN42 on DSub socket Conn. 2., see fig. 4 on page 10.

The inputs require TTL-like signals.

The pins have a double allocation as digital channels, see Diff. digital channels DIO47:DIO40. The channels must be configured as digital inputs with Conf_DIO to enable the usage as counter inputs.

The counter inputs A/CLK, B/DIR, and CLR/LATCH are differential and not protected against over-voltage. For each channel there is a positive and a negative pin, between which the voltage difference is measured (but not free of potential). Between each pair of channel pins, there is a bus termination of 120 Ω . Both, the positive and negative input have to be connected at each input.

All functions of counter blocks 4 or 5 are described in chapter 15 "Counter block".

Instructions to program counters are described starting from page 111 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Function	Instructions
Configure channels as inputs.	Conf_DI0
Clear counter.	Cnt_Clear

Programming

Programming

Function	Instructions
Disable or enable counter (please note already running counters).	Cnt_Enable Cnt_PW_Enable
Read out status register.	Cnt_Get_Status
Write counter value into Latch A.	Cnt_Latch
Write counter value into latch A and read the latch value.	Cnt_Sync_Latch
Set counter operation mode.	Cnt_Mode
Read latch value.	Cnt_Read
Return the content of a counter register.	Cnt_Read_Latch
Set counter mode to single ended / differential inputs.	Cnt_Read_Int_Register
Write PWM counter values into latch A.	Cnt_PW_Latch
Read frequency and duty cycle of a PWM counter.	Cnt_Get_PW
Read high time and low time of a PWM counter.	Cnt_Get_PW_HL
Start several functions synchronously.	Sync_All

8.3 SSI interface

An incremental encoder with SSI interface can be connected the decoder. The signals are differential and have RS422/485 levels.

A decoder either reads out an individual value (on request) or continuously provides the current value.

The decoder connections are provided on the socket Conn. 2, pins SSI CLK, SSI DATA. For pinouts see fig. 4 on page 10.

Pin SSI DATA / DIGIN60 may also be used as digital input to evaluate the SSI input level.

The following properties of the decoders can be set via software:

- Clock rate: With <u>SSI_Set_Clock</u>, clock rates of approx. 100kHz up to 2.5MHz are possible.
- Timing: **SSI_Set_Delay** sets the time between reading two encoder values.
- Resolution: Can be set with <u>SSI_Set_Bits</u> up to 32 bit.

A conversion from Gray code into binary code is made with the routine below, which you have programmed in the *ADbasic* process.

```
REM Par_1 = Gray value To be converted
REM Par_2 = Flag indicating a new Gray value
REM Par_9 = Result of the Gray-To-binary conversion
```

```
Dim m, n As Long
```

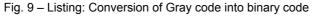
```
Event:

If (Par_2 = 1) Then 'Start of conversion

m = 0 'initialize value

Par_9 = 0 ' -"-

For n = 1 To 32 'Go through all possible 32 bits


m = (Shift_Right(Par_1, (32-n)) And 1) XOr m

Par_9 = (Shift_Left(m, (32-n))) Or Par_9

Next n

Par_2=0 'Enable next conversion

EndIf
```


Instructions to program digital channels are described starting from page 128 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Setting properties

Programming

Example: Conversion of Gray code

Function	Instruction
Initialize decoder	SSI Mode
	SSI Set bits
	SSI Set Clock
	SSI_Set_Delay
Read encoder values	SSI_Read
	SSI_Start
	SSI_Status
Start several functions synchronously.	Sync_All

9 Option DCT

Option X-A20-DCT includes all functions of option D. Option DCT provides:

- 52 digital channels
 - 32 TTL-digital channels DIO31:DIO00, page 21
 - 8 Diff. digital channels DIO47:DIO40, page 18 (see option D)
 - 12 Comparator inputs DIO59:DIO48, page 21
 - Edge control and Edge output for digital channels, page 22
- Counters
 - 2 TTL Counters 2, 3, page 22
 - 2 Diff. counters 4, 5, page 18 (see option D)
 - 2 Comparator Counters 6, 7, page 23
- 1 SSI interface, page 19 (see option D)

9.1 TTL-digital channels DIO31:DIO00

32 digital channels (DIO31:DIO00) are available on D-Sub socket Conn. 3, see Fig. 4 – Pin assignment analog/digital (sockets). The channels are programmable as inputs or outputs in groups of 8.

The channels DIO31:DIO26 are double assigned as counter inputs (see TTL Counters 2, 3). Only one of the two purposes (digital channel or counter input) can be used.

The channels are TTL-compatible and not protected against over-current.

Input and output FIFOs enable edge control for digital channels, see Edge control and Edge output on page 22.

Instructions to program digital channels see below (chapter 9.2 and chapter 9.3).

9.2 Comparator inputs DIO59:DIO48

12 digital inputs (DIGIN59:DIGIN48) with comparator function are available on D-Sub socket Conn. 2, see Fig. 4 – Pin assignment analog/digital (sockets). All channels are permanently set as inputs and cannot be used as outputs.

The channels DIGIN53:DIGIN48 can also be used as comparator counter inputs, see Comparator Counters 6, 7. Only one of the functions (digital channel or counter input) can be used at a time.

Comparator inputs are internally connected with the analog outputs of the 12-bit DAC, DAC12-1 with DIGIN55:DIGIN48 and DAC12-2 with DIGIN59:DIGIN56. The set DAC voltage (0V...5V) serves as comparator signal, i.e. an applied digital signal with a lower voltage is processed as level Low, with a higher voltage as level High.

The maximum measurement frequency depends on the comparator signal set (at the DAC) and on the voltage of the input signal. For input voltages around +24V, the maximum measurement frequency is less than 30kHz.

For an accurate measurement of the pulse width of the input signal, a measurement frequency well below the maximum must be selected.

The comparator inputs can be combined with edge control for digital channels, see Edge control and Edge output on page 22.

Instructions to program digital channels are described starting from page 78 and in the online help. The instructions are defined in the include file ADwin-X.inc.

FunctionInstructionsConfigure channelsConf_DIOConfigure input filterDigin_Filter_InitRead input values.Digin, Digin_Long2Control edges of digital inputs.Digin_Edge2Set digital outputs.DigoutDigout_Long2Digout_bits2Get_Digout_Long2

Programming

	Function	Instructions	
	Read and set values via latch register.	Dig_Latch Digin_Read_Latch2 Digout_Write_Latch2	
	Start several functions synchronously.	Sync_All	
	9.3 Edge control and Edge output	ıt	
	Option X-A20-D can automatically monitor the edges of digital inputs and independer output edges on digital outputs at determined points in time.		
	Edge detection and edge output are available for channels of option DCT.	for all digital channels of X-A20, not only	
	There are two input FIFOs and two output FIF nels (DIO31:DIO00 or DIO60:DIO32).	FOs, each FIFO refers to 32 digital chan	
Edge control	An edge detection checks every 10 ns whether a level has been changed at the se digital inputs or if an edge has has occurred ist. With every change, a value pair i ied to the appropriate input FIFO:		
	 Value 1 contains the level status of all 32 of 	channels as bit pattern.	
	 Value 2 is a time stamp, the current value detection has its own timer. 	of the 100 MHz timer. Each edge	
	Up to 511 of value pairs (level status and time building an exact logging of all changes. The	• /	
	The edge detections for channels DIO31:DIO00 and DIO60:DIO32 work independ from each other.		
	As an alternative, you can register edges (with nels with Digin_Edge1 /2. If a positive or a appropriate bit of the input channel is set in a any time. Number and timing of the edges are	a negative edge arrives at an input, the buffer. The buffer content can be read a	
Time-controlled edge output			
Programming	Instructions to program digital channel FIFOs are described starting from page s in the online help. The instructions are defined in the include file ADwin-X.inc		
	Function	Instructions	
	Use output Fifo.	Digout_Fifo_Read_Timer Digout_Fifo_Clear Digout_Fifo_Enable Digout_Fifo_Empty Digout_Fifo_Mode Digout_Fifo_Start Digout_Fifo_Write	
	Use input Fifo.	Digin_Fifo_Read_Timer Digin_Fifo_Clear Digin_Fifo_Enable Digin_Fifo_Full Digin_Fifo_Read	
	Start several functions synchronously.	Sync_All	
	Start several functions synchronously. 9.4 TTL Counters 2, 3 Option X-A20-D additionally provides two TTL The counter inputs are on the pins DIO31:DIC on page 10	_ counters with numbers 2 and 3.	

on page 10. The pins DIO31:DIO26 have a double allocation as digital channels, see TTL-digital channels DIO31:DIO00. The channels must be configured as digital inputs with Conf_DIO to enable the usage as counter inputs.

All functions of the counter blocks are described in chapter 15 "Counter block".

Instructions to program counters are described starting from page 111, overview see below (chapter 9.5).

9.5 Comparator Counters 6, 7

Option X-A20-D additionally provides two comparator counters with numbers 6 and 7.

The counter inputs are on the pins DIGIN53:DIGIN48 on DSub socket ${\tt Conn.}$ 2., see fig. 4 on page 10.

The pins have a double allocation as digital channels, see Comparator inputs DIO59:DIO48. The channels must be configured as digital inputs with Conf_DIO to enable the usage as counter inputs.

The inputs DIGIN53:DIGIN48 of the comparator counters are internally connected with the analog output of the 12-bit DAC DAC12-1 (see also Comparator inputs DIO59:DIO48). The set DAC voltage (0V...5V) serves as comparator signal, i.e. an applied digital signal with a smaller voltage is processed as level Low, with a higher voltage as level High.

All functions of counter blocks 4 or 5 are described in chapter 15 "Counter block".

Instructions to program counters are described starting from page 111 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Programming

Function	Instructions
Configure channels as inputs.	Conf_DIO
Clear counter.	Cnt_Clear
Disable or enable counter (please note already running counters).	Cnt_Enable Cnt_PW_Enable
Read out status register.	Cnt_Get_Status
Write counter value into Latch A.	Cnt_Latch
Write counter value into latch A and read the latch value.	Cnt_Sync_Latch
Set counter operation mode.	Cnt_Mode
Read latch value.	Cnt_Read
Return the content of a counter register.	Cnt_Read_Latch
Set counter mode to single ended / differential inputs.	Cnt_Read_Int_Register
Write PWM counter values into latch A.	Cnt_PW_Latch
Read frequency and duty cycle of a PWM counter.	Cnt_Get_PW
Read high time and low time of a PWM counter.	Cnt_Get_PW_HL
Start several functions synchronously.	Sync_All

10 Option COM

Option X-A20-COM provides additional interfaces:

- 2 CAN interfaces "High-speed", page 24.
- 1 RS232 interface, page 25.

10.1 CAN interfaces

The CAN interfaces 1 and 2 ("High-speed") run independently from each other.

10.1.1 Hardware description

The connectors of the CAN interfaces are on 9-pole DSub plugs ${\tt CAN1}$ and ${\tt CAN2},$ same assignment.

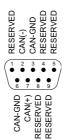


Fig. 10 – CAN: Pin assignment

Both interfaces have their individual CAN-GND potentials; the potentials are both galvanically isolated from each other as well as from the mass potential (GND) of the enclosure.

If the CAN interface functions as the physical termination of a high-speed CAN bus, it must be terminated with a 120Ω resistor (only the first or the last CAN node). CAN nodes, which are not positioned in an end-location, must not be terminated.

If termination is required for one (or both) interfaces, the pins CAN(+) and CAN(-) must be connected by a resistor of 120Ω .

10.1.2 Description of the CAN interface

The CAN bus interface works according to the specification CAN 2.0 parts A and B as well as to ISO 11898. You program the interface with *ADbasic* instructions, which are directly accessing the controller's registers.

Messages sent via CAN bus are data telegrams with up to 8 bytes, which are characterized by so-called identifiers. The CAN controller supports identifiers with a length of 11 bit and 29 bit. The communication, that means the management of bus messages, is effected by an input FIFO and an output FIFO.

The CAN bus (high speed) can be set to frequencies up to 1MHz and is normally run with 1MHz. The CAN bus is galvanically isolated from the *ADwin* system by optocouples.

Managing messages

The CAN controller distinguishes sent messages by the identifier, i.e. a code number of a defined bit length. The bit length determines the range of possible identifiers $0...2^{11}$ -1 and $0...2^{29}$ -1.

The controller stores messages to be sent in an output FIFO, and received messages in an input FIFO. After initialization of the CAN controller, both FIFOs are not configured and are not active on the bus.

Additionally, messages can be sent with high priority. If so, messages in the output FIFO are postponed.

In *ADbasic*, you get a CAN message after receipt from the input FIFO via the can_msg [] array. The array contains up to 8 data bytes, the amount of data bytes, the identifier, and (only receiving) a receipt time stamp (11 elements). While sending, a message is also transferred via the can_msg [] array.

Input / output FIFO

Option COM

Sending a message is done as follows:		Sending a message
 Save the message and identifier in the can_msg[] array. 		
 Transfer the can_msg [] array with CAI interface. As soon as the bus is ready, t With normal priority, the interface. The message are sent in the ord With high priority, the message is access to the CAN bus. Message postponed. 		
Receiving a message is done as follows:	Receiving a message	
 Set the receive filter to selected identified not set the receive filter, all CAN messa 		
 The CAN interface checks the bus for ir ing to the receive filter and stores them 		
 You read the message from the input F CAN_Receive) and read the appropria 		
	sages. If the FIFO is full, any incoming mes- nitely lost. Therefore, pay attention to read- nem. A data loss is indicated by a flag.	
With CAN_RX_Set_Filter, you can set a sages. Filters on be enabled and disabled message is compared to the active receiver	Filtering incoming messages	
 If the identifier of the message is equal to in the input FIFO. 		
 As soon as a message has successfull stored in the receive FIFO. 		
ferent settings may be useful than availabl support.	the CAN bus frequency. In some cases, dif- e with CAN_Init. If so, please refer to out bed starting from page 136 and in the online	Programming
Function	Instructions	
Initialization	CAN Init	
Receving and sending data	CAN_INIC can_msg[] CAN_Receive CAN_RX_Set_Filter CAN_Transmit	
10.2 RS232 interface		
Die RS232 interface runs without handshak interfaces are on the DSub plug RS232.	e. The connectors of the CAN	
The interface provides an input FIFO and a each 64 byte. The following interface parar		
 Parity: In order to recognize an error or i fer, a parity bit can be transferred at the even or odd or you can have no parity b 		
- Data bits: the active data to be transfer		
- Stop bits: The number of stop bits can be		
 Baud rate: The physical data are betwee Typical baud rates are 300, 600, 1200, 		
Instructions to program counters are descril	bed starting from page 147 and in the online	Programming

Instructions to program counters are described starting from page 147 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Programming

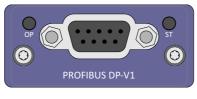
Function	Instructions
Initialization	RS_Init
Receving and sending data	RS_Read_FIFO RS Write FIFO
	RS_Write_FIFO_Full
	RS_Write_FIFO_Empty

11 Option Profibus

The add-on X-A20-Profibus provides a fieldbus node with the functionality of a Profibus slave. All settings are done via software.

The option cannot be combined with Option Profinet-IRT or Option EtherCAT.

Functions description


After power-on the fieldbus node must be initialized. The initialization determines station address (slave node address) on the Profibus and the size of the input area and the output area.

There is a range each for data input and data output; the size of each range can be set individually, i.e. a size of 1, 2, 4, 8, 16, 32, or 61 double words.

Hardware

The pin assignment of the 9-pin DSUB connector refers to DIN E 19245, part 3.

The Profibus has to be terminated at its physical beginning and at the end of its segments by an active terminator. If required, you have to add the terminator yourself at the appropriate data lines of the fieldbus node or use an appropriate connector with integrated terminator.

Besides the DSUB connector, there are 2 LEDs, which display the operation status of the fieldbus node: operation mode (OP) and interface status (ST).

LED	Status	Meaning
OP	off	Offline or no power.
	green	Fieldbus node online, data exchange.
	flashing green	Fieldbus node online, status clear.
	flashing red, 1 flash	Error: Input/output configuration does not fit to master configuration.
	flashing red, 2 flashes	Error in Profibus configuration.
ST	off	Offline or no power.
	green	initialized.
	flashing green	initialized, diagnostiv event(s) present.
	red	Exception error.

Fig. 11 - Profibus: Meaning of LEDs

Projecting the Profibus

You are projecting the Profibus bus with a configuration tool suitable for the bus master. The following process description uses a Profibus master of the Siemens company and the appropriate program SIMATIC-Manager.

The process description is valid for other configuration tools, correspondingly. Look for the exact process description of bus projection in the documentation of the configuration tool.

 In the program SIMATIC-Manager, install the GSD file hmsb1815.gsd of the fieldbus node from C:\ADwin\Fieldbus\Profibus.

The configuration tool loads all required information about the new slave from the GSD file; the file content is determined by EN 50170. Afterwards, the slave appears in the profile tree and can be accessed.

- Set the station address of the slave in SIMATIC-Manager to the same value as in ADbasic with Init_Profibus.
- Configure the size of of the data ranges for input data and output data one by one.

Install the GSD file

Please note the following rules:

- The terms "input" and "output" have reverse meanings in *ADbasic* (slave) and in the configuration tool (master). If the input size is initialized in *ADbasic*, you have to configure the output size
- correspondingly in the configuration tool.
 Size of data ranges must correspond to the values used for *ADbasic* initialization with **Init Profibus**.
- The data range size for input and output can be set indidually. Data range can be configured in one of the following sizes: 1, 2, 4, 8, 16, 32, 61 double words.

The following example line in *ADbasic* configures the slave with station address 5, input size 2 double words, output size 4 double words: Par_31 = Init_Profibus (5, 2, 4, conf_Arr)

To configure the slave correctly in the configuration tool, you have to set the input first to 4 double words and then the output to 2 double words. The graphic shows the example configuration:

🖳 HW Konfig - [SIMATIC 400	(Konfiguration) M40_Master]						
🛄 Station Bearbeiten Einfügen	Zielsystem Ansicht Extras Fenste	er <u>H</u> ilfe						_ 8 ×
D 🚅 🏤 🖩 🗞 🚑 Pe	🖻 💩 🏜 📳 🗖 💥 📢	•						
					^			
(0) UR2								
1 ? PS-407	<u>^</u>					Suchen:		m† m∔
2 3 CPU 416-3 P		PROFIBUS(1): D	P-Mastersysten	(1)		Profil: Sta	ndard	-
3 CPU 416-3 P	NZDP		T				📑 Anybus CompactCom 40	DP-V1 🔥
IF1			🚡 (3) Anybu	5			🗌 📗 Universalmodul	
X1 MPI/DP			DP-NORM				- Input 1 Dword	
X5 PN-10 X5 P1 R Pott 1			Di noram				Input 2 Dwords	
X5 P2 R Pott 2				_			Input 8 Dwords	
5							📕 📕 Input 16 Dwords	
6							📕 Input 32 Dwords	
7							Input 61 Dwords	
8							Output 1 Dword	
							Output 2 Dwords Output 4 Dwords	
							Output 8 Dwords	
							Output 16 Dwords	
							🚺 Output 32 Dwords	
							🔤 🚺 Output 61 Dwords	
							Schaltgeräte	
					~		I/U Gateway	
<				>			Kompatible PROFIBUS-DP-S	aves
					_	- 📅 PROF	IBUS-PA	
(3) Anybus CompactCor	n 40 DP-						INET IO	
Steckplatz 🚺 DP-Kennung	Bestellnummer / Bezeichnung	E-Adresse	A-Adresse	Kommentar	1	E SIMA	FIC 300 FIC 400	
1 67	Input 4 Dwords	512527				🛨 🔝 SIMA'	FIC PC Based Control 300/400	
2 131	Output 2 Dwords		512519	-		🗄 🖳 SIMA'	FIC PC Station	~
3			-			PBOEIBLIS-DI	P-Slaves der SIMATIC S7, M7 (ind C7 ዲረ
4 5								<u> </u>
6				N 100	•			
						J		

Drücken Sie F1, um Hilfe zu erhalten.

Programming with ADbasic

The Profibus interface is programmed with *ADbasic* instructions which are described starting from page 153 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Area	Instructions
Reset, initialize data ranges	Init_Profibus
Read and write data, message handling	Run_Profibus

Initialization must be run with low priority since it takes some time; if using high priority, the PC would stop communication after a time-out. On the other hand, reading and writing data may happen with high priority.

Specification

The fieldbus node is in agreement with the European Standard EN 50170, Volume 2. This norm is provided by the Profibus user organization:

Profibus Nutzerorganisation e.V. Haid-und-Neu-Str. 7 76131 Karlsruhe, Germany Phone: +49-72196-58590 Fax : +49-72196-58589 Order number: 0.042

The following table shows the operating modes, the fieldbus node supports and its behavior:

Operating mode	Behavior
Operate	The Profibus slave is part of the cyclic data exchange. Input data are transferred to the master via bus and output data are made ready for the master to transfer them.
Clear	The inputs are updated and the outputs are set to zero.
Stop	The slave is no longer part of the bus communication.

Fig. 12 – Profibus: Operating modes

Operating modes of fieldbus node

12Option Profinet-IRT

The add-on X-A20-Profinet-IO provides a fieldbus node with the functionality of a Profinet IRT slave. All settings are done via software.

The option is available with different connectors:

- Profinet-IRT-Cu: Interface with copper cable, 2 sockets RJ-45, customary connectors.
- Profinet-IRT-FO: Interface with optical fiber, 2 duplex sockets SC-RJ (fiber optics).

The option cannot be combined with Option Profibus or Option EtherCAT.

Functions description

After power-on the fieldbus node must be initialized. The initialization determines the size of the input and output areas.

There is a range each for data input and data output; each range has a maximum size of 1280 bytes. Please note, that the terms "input" and "output" are used as the fieldbus master sees them.

During initialization, you set the number and size of input and output areas separately. Nevertheless, during operation only one size can be used.

Hardware

The connectors are connected to standard plugs:

- Ethernet plugs RJ-45 (IRT-Cu)
- Left and right of the RJ-45 connectors, there are two LEDs, which display the operation status of the profinet node: network status (NS) and interface status (MS).

s P¹ PROFINET P²

In each connector there is a LINK LED.

Fiber duplex plugs SC-RJ (IRT-FO)

Left and right of the connectors, there are four LEDs. The half concealed LEDs display the operation status of the profinet node: network status (NS) and interface status (MS).

The LEDs more outside display the LINK status for the plug.

LED	Status	Meaning
NS	off	Offline: No power or no connection with IO controller.
	green	Online (RUN): Field bus node online, IO Controller in RUN state.
	green, 1 flash	Online (STOP): Field bus node online, IO Controller in STOP state or IO data bad. IRT synchronization not fin- ished.
	green, blinking	Blink: Used by engineering tools to identify the node on the network.
	red	Fatal event: Major internal error. Indication is combined with a red MS LED.
	red, 1 flash	Station name error: Station name is not set.
	red, 2 flashes	IP address error: IP address is not set.
	red, 3 flashes	Configuration error: Expected identification differs from real identification.
MS	off	Not initialized: No power or module in SETUP or NW_INIT state.
	green	Normal operation.
	green, 1 flash	Diagnostic events present.
	red	Device in state EXCEPTION.
	red	Fatal event: Major internal error. Indication is combined with a red NS LED.
	red / green alternating	Firmware update. Do not power off the device. Turning the device off during this phase could cause perma- nent damage.
LINK	off	No link.
	green	Ethernet link established, no communication.
	green flickering	Ethernet link established, communication present.

Fig. 13 – Profinet: Meaning of LEDs

Projecting the Profinet

You are projecting the Profinet bus with a configuration tool suitable for the bus master. The following process description uses a Profinet master of the Siemens company and the appropriate program SIMATIC-Manager.

The process description is valid for other configuration tools, correspondingly. Look for the exact process description of bus projection in the documentation of the configuration tool.

- In the program SIMATIC-Manager, install the GSD file GSDML-V2.33-HMS-ABCC40-PIR-ADwin-20180620.xml of the fieldbus node from C:\ADwin\Fieldbus\Profinet.

The configuration tool loads all required information about the new slave from the appropriate XML file; the file content is determined by EN 50170. Afterwards, the slave can be accessed by any master.

- In the configuration tool, add the Slave, i.e. the fieldbus node to the Profinet.

Afterwards the bus could be structured as below:

Install the GSD file

	聞입 HW Konfig - [SIMATIC 400 (Konfiguration) Master_Modultest] 即句 Station Rearbeiten Einfügen Zielsystem Ansicht Extras Eenster Hilfe	_ = ×		
	Image: Control of the second	*		
		4		
	Drücken Sie F1, um Hilfe zu erhalten.			
Configure the Slave	 Configure number and length of input and output data of input and in the fieldbus node memory one by one. 	d output data		
	 Please note the following rules: The terms "input" and "output" have reverse meanings in <i>ADbasic</i> (slav and in the configuration tool (master). If there are inputs initialized in <i>ADbasic</i>, you have to configure outputs a correspondent in the configuration tool. Number and length of data ranges must equal the data used for <i>ADbasic</i> initialization with <i>Init_ProfinetIO</i>. The data range sizes for input and output can be set indidually. Data range can be configured in on e of the following sizes (1 double word = 4 byte 1, 2, 4, 64 double words; 64, 128, 320 double words. The blocks of 64 double words are numbered and may only be configure in ascending order IN0IN5 / OUT0OUT5. 			
Example configuration	The following example line in ADbasic configures the slave with a	in input range		
	and an output range of 320 double words each (=1280 bytes): Init_ProfinetIO(320, 320, work_arr) To configure the slave correctly in the configuration tool, you have to set 5 of 256 bytes (=64 double words) in both input range and output range. note the required order of block configuration: HW Konfig-(SIMATIC 400 (Konfiguration) Master_Modulest) Station Bearbeiten Einfügen Zielsystem Ansicht Egtras Fenster Hilfe Station Bearbeiten Einfügen Zielsystem Ansicht Egtras Fenster Hilfe			
	(1) profinetcc	4		
	Steckplatz Baugruppe Bestellnummer E-Adresse A-Adresse Diagnoseadresse			
	X1 Interlace 16377" F1 Port 1 16376" 16376"	E		
	P2 Par/2 Fill			
	2 IN1064UINT32 256.511 3 IN2064UINT32 512767 4 IN3064UINT32 768.1023			
	5 IN4064UINT32 10241279 6 OUT0064UINT32 0255			
	7 IDUT1064UINT32 256511 8 0UT2064UINT32 512767 9 0UT2064UINT32 7881023			
	10 DUT 4064UINT 32 10241279 11 0	_		
	Drücken Sie F1, um Hilfe zu erhalten.			

Programming with ADbasic

The Profinet interface is programmed with *ADbasic* instructions which are described starting from page 190 and in the online help. The instructions are defined in the include file ADwin-X.inc.

Area	Instructions
Reset, initialize data ranges	Init_ProfinetIO
Read and write data, message handling	Run_ProfinetIO

Specifications

The fieldbus node is in agreement with the Standard IEC 61158 (Profinet). This norm is provided by the Profibus user organization:

ProfibusNutzerorganisation e.V. Haid-und-Neu-Str. 7 76131 Karlsruhe, Germany Phone: +49-72196-58590 Fax : +49-72196-58589 www.profibus.com

The following table shows the operating modes, the fieldbus node supports and its behavior:

Operating modes of fieldbus node

Operating mode	Behavior
Setup	Interface initialization.
Wait	Slave waits for bus start by master.
Active	Profinet slave is part of the cyclic data exchange.
Error	Error. Profinet slave is not part of the cyclic data exchange.
Exception	Major internal error. Profinet slave is not part of the cyclic data exchange.

Fig. 14 - Profinet: Operating modes

13Option EtherCAT

The add-on X-A20-EtherCAT provides a fieldbus node with the functionality of an Ether-CAT slave. All settings are done via software.

The option cannot be combined with Option Profibus or Option Profinet-IRT.

Functions description

After power-on the fieldbus node must be initialized in *ADbasic*. The initialization determines the size of the input and output areas.

There is a range each for data input and data output; each range has a maximum size of 1440 bytes. Please note, that the terms "input" and "output" are used as the fieldbus master sees them.

During initialization, you set the number and size of data ranges in the input area and the output area separately. Nevertheless, during operation only one size can be used.

Hardware

The interface has two standard Ethernet plugs RJ-45 marked with ${\tt IN}$ and ${\tt OUT}.$

Inside each plug there are two LEDs; the upper left is named Link / Activity and displays the node operation status on the EtherCAT bus. The upper right LED has no function.

Left and right of the RJ-45 connectors, there are two LEDs, which display the EtherCAT status (RUN) and the occurrence of communication errors (ERR).

LED	Status	Bedeutung
Link /	off	Offline (or no power).
Activ- ity	green	Fieldbus node online, no data exchange.
ICY	green, flickering	Fieldbus node online, with data exchange.
RUN	off	Status INIT: interface being initialized (or no power).
	blinks green	Status PRE-OP: Interface has contact to bus master.
	flashes green once	Status SAFE-OP: Interface can read data from the bus, but not send.
	green	Status OP: Interface is completely ready, inputs and outputs are active.
	red	Status EXCEPTION.
ERR	off	No error (or no power).
	blinks red	Invalid configuration.
	flashes red once	Local error in the interface; EtherCAT status has been changed.
	flashes red twice	Application watchdog time-out.
	red	Critical communication error.
	F : 41	E EtherCAT: Dedeuture der LED

Fig. 15 – EtherCAT: Bedeutung der LED

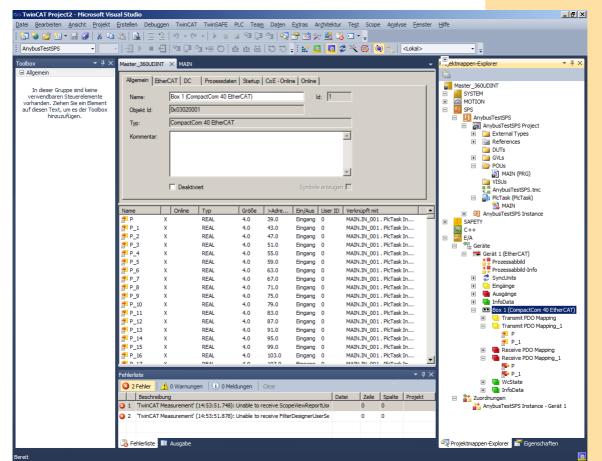
If both LEDs RUN and ERR turn red, a fatal event has occurred in the interface. Please do refer to the support of Jäger Messtechnik; you find the address on the inner side of the cover page of the manual.

Projecting the EtherCAT bus

You are projecting the EtherCAT bus with a configuration tool suitable for the bus master. The following process description uses the program "TwinCAT System Manager" of the Beckhoff company (version 3.1) as EtherCAT bus master.

The process description is valid for other configuration tools, correspondingly. Look for the exact process description of bus projection in the documentation of the configuration tool.

- Configure the ADwin-EtherCAT slave in an ADbasic program using the instruction Init_EtherCAT.
- Copy the description file HMS CompactCom 40 EtherCAT 2_08.xml of the fieldbus node from C:\ADwin\Fieldbus\EtherCAT into the root directory of the configuration tool.


Upon start-up, the configuration tool loads the required information about the new slave from the appropriate description file.

- Add the ADwin-EtherCAT slave as bus member to the EtherCAT bus.

Using TwinCAT System Manager, you mark the EtherCAT master and select the menu entry Scan from the context menu (right mouse click). A list of all current bus members will be displayed.

- Select the ADwin-EtherCAT slave from the list; now the slave is confirmed as bus member.
- Read the configuration into the configuration tool.

Using the TwinCAT System Manager, you mark the *ADwin*-EtherCAT slave and click the button Load PDO Info from the device.

Now the bus projecting is complete and the module is ready to run.

Programming with ADbasic

The fieldbus node is easily programmed with *ADbasic* instructions from ADwin-X.inc; description see page 160 or in the online help:

Area	Instructions
Reset, initialize data ranges	Init_EtherCAT
Read and write data, message control	Run_EtherCAT

Specifications

The fieldbus node is in agreement with the international standard IEC 61158 and IEC 61784-2. More information is provided by the EtherCAT user organization:

EtherCAT Technology Group Ostendstraße 196 D-90482 Nürnberg Tel.: +49 9115405620 Fax : +49 9115405629 http://www.ethercat.org/

The following table shows the operating modes, the EtherCAT node supports and its behavior:

Operating mode	Behavior
Init	The EtherCAT slave is being initialized by the bus master.
Boot	The EtherCAT slave is in boot mode.
PreOp	The interface is part of the data exchange, inputs and outputs are not active.
SafeOp	The interface can receive data, outputs are not active.
Ор	The interface is completely ready; inputs and outputs are active.

Fig. 16 – EtherCAT: Operating modes

Operating modes of EtherCAT node

14Option Boot

ADwin-X-A20-Boot starts a previously programmed application automatically after power-up. After installation of this application an operation without computer is possible.

You program the bootloader in the development environment *ADbasic*, menu entry Tools / Bootlader.

With ADwin-X-A20-Boot, the following steps are executed after power-up:

- Loading the operating system.
- Loading of the compiled processes, compiled by ADbasic (max. 10).
- Automatic starting of the process no. 10. Here you have also to program the start of all other processes.

If you do not wish to work with the bootloader option:

- Disable temporarily:
 - Switch on ADwin-X-A20.
 - Boot the system from ADbasic. The previously saved processes are disabled.
 - After another power-up, the bootloader option is enabled again.
- Disable permanently:
 - Disable the bootloader in *ADbasic*, menu entry Tools / Bootlader, Tab Enable/Disable.
 - Switch off *ADwin-X-A20* and power-up again.

ADwin-X-A20-Boot does not provide an EEPROM (unlike other ADwin hardware).

there are two 32-bit counters running in parallel and independently: One up/down counter with clock/direction evaluation or four edge evaluation for quadrature encoders. One PWM counter for measurement of frequency and duty cycle or high time / low time. Counters are configured via software, counter data are provided in latches to be read. An ADwin-X-A20 can be equipped with up to 7 counters in total. The counter numbers are assigned to the following options: Counter 1 (TTL): Option CO1, page 17 Counters 2...3 (TTL): Option DCT, page 22 Counters 4...5 (differential): Option D / Option DCT, page 18 Counters 6...7 (comparator): Option DCT, page 23 A/CLK/PWM⊖ UUU control register ПΓ B/DIR/PWMC CLR/LATCHC **EVENT**O G 32 bit up/down counter 32 bit PWM counter CLR EN CLF 32 bit latch < 32 bit latch > 32 bit latch > 32 bit latch 32 bit latch < > 32 bit latch 32 bit latch 32 bit latch

15Counter block

NOTE: Only counter #1 is shown for clarity of the schematic.

Bus

Fig. 17 – Block diagram of a counter block

Up/down counter

With event counting, incrementing/decrementing of the counter is caused by external square-wave signals at the inputs A/CLK and B/DIR.

Each of the 7 counters in ADwin-X-A20 is designed as counter block. In a counter bloc,

A positive edge at CLR/LATCH either sets the counter to zero (CLR) or copies the counter values into the latch (LATCH). See also chapter 13.2.

The following modes are possible:

- Clock and direction: A positive edge at CLK increments or decrements the counter values by one. The signal at DIR determines the counting direction (0 = decrement; 1 = increment).
- Four edge evaluation (A/B): Every edge of the signals (phase-shifted by 90 degrees) at A/CLK and B/DIR causes the counter to increment/decrement. The counting direction is determined by the sequence of the rising/falling edges of these signals. This mode is particularly used for quadrature encoders.

You can invert the signals at the inputs A/CLK and B/DIR via software (instruction Cnt_Mode) and thus change both the triggering signal and the counting direction.

PWM counter

For pulse width measurement, incrementing/decrementing of the counter is caused by an internal reference clock generator; a signal frequency of 100MHz can be used. See also chapter 13.3.

The counter value is written into a latch register if an edge–at one's option positive or negative–occurs at the selected input (A/CLK, B/DIR or CLR/LATCH). Latching can be triggered by software, too.

From the latch register, frequency and duty cycle or high time / low time of the PWM signal can be read.

Input signals

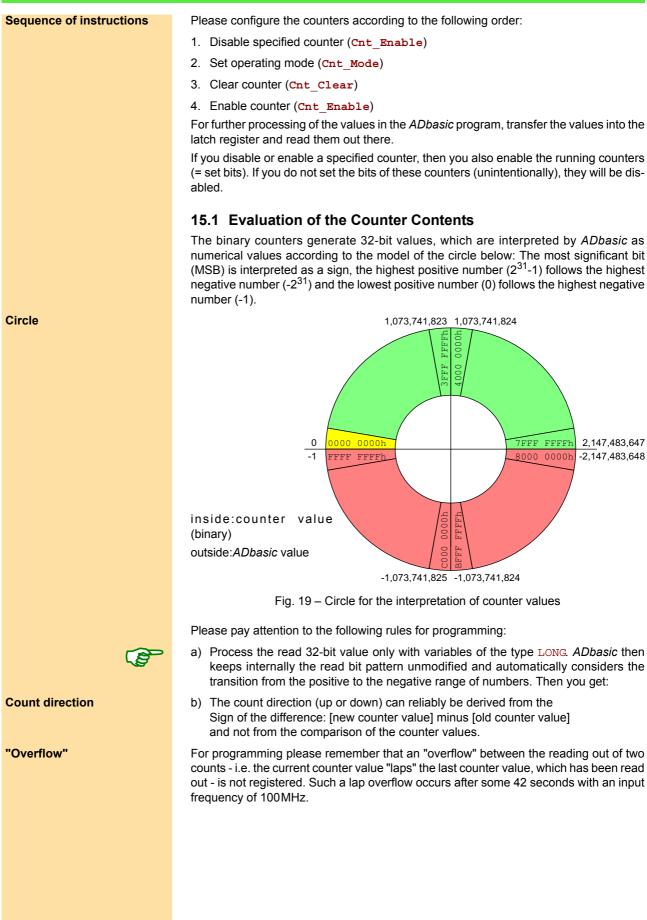
The counters are controlled by *ADbasic* instructions via control register (instructions see below).

At the inputs A/CLK, B/DIR and CLR/LATCH TTL-alike signals are necessary.

Although all counter inputs have a pull-down resistor of $10 k\Omega$, not-connected inputs can cause errors in an environment, which is not protected against interferences. If you do not use a counter input, connect both lines of the (differential) input to a specified potential for safety reasons: Connect the positive input to +5V and the negative input to GND.

Programming counters

The functions for counter access be found in the include files ${\tt ADwin-X.inc}$ for ADbasic.

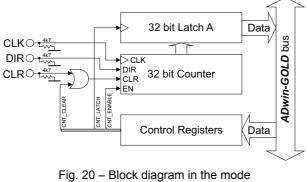

Therefore, programming has to start with the include file, so that you can use the instructions in the following table. The instructions are described in chapter 7.2, starting from page 111.

Instruction	Function	
Cnt_Clear	Clear counter.	
Cnt_Enable	Disable or enable counter (please note already running	
Cnt_PW_Enable	counters).	
Cnt_Get_Status	Read out status register.	
Cnt_Latch	Write counter value into Latch A.	
Cnt_Sync_Latch	Write all counter values into latches at the same time.	
Cnt_Mode	Set counter operation mode.	
Cnt_Read	Write counter value into latch A and read the latch value.	
Cnt_Read_Latch	Read latch value.	
Cnt_Read_Int_Regi	Return the content of a counter register.	
ster		
Cnt_PW_Latch	Write PWM counter values into latch A.	
Cnt_Get_PW	Read frequency and duty cycle of a PWM counter.	
Cnt_Get_PW_HL	Read high time and low time of a PWM counter.	
Sync_All	Start several functions synchronously.	

Fig. 18 – Instructions for a counter block

Mostly, the instructions are effecting all counters. Therefore, pay attention to the fact, which bits you are setting or deleting. You will be able to effect every counter individually or all together.

Programming example


15.2 Using Event Counter

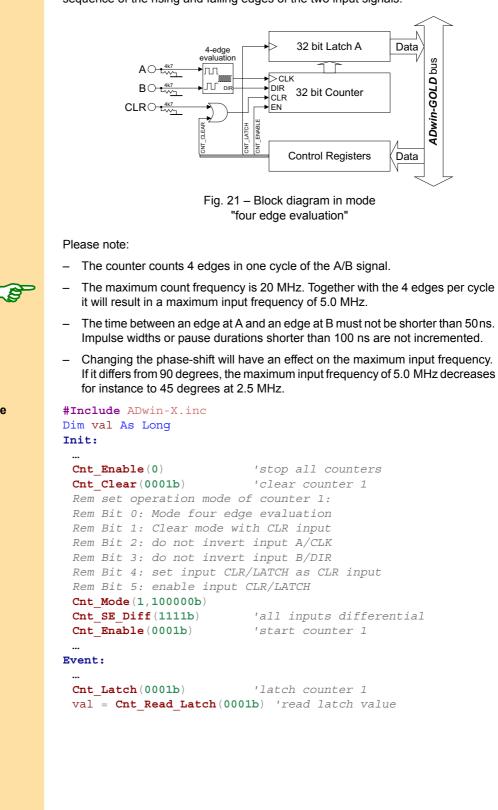
External square-wave signals at the inputs A/CLK and B/DIR clock the counters in this mode.

The input CLR/LATCH (at high-signal) can be used to

- clear the counter (CLR)
- latch the counter values into latch register A (LATCH).

15.2.1 Clock and Direction

"clock and direction"


Every positive edge of a square-wave signal at the CLK input (clock) is counted (incremented or decremented) up to a maximum frequency of 20 MHz. The direction is derived from a high signal (count up) or low signal (count down) at the DIR input (direction); This signal can be static, for a fixed count direction, or dynamic, for changing directions.

The signals at the inputs A/CLK and B/DIR can be (individually) inverted with Cnt_Mode.

```
#Include ADwin-X.inc
Dim val As Long
Init:
 Cnt Enable(0)
                          'stop all counters
 Cnt_Clear(0001b)
                         'clear counter 1
 Rem set operation mode of counter 1:
 Rem Bit 0: Mode clock/direction
 Rem Bit 1: Clear mode with CLR input
 Rem Bit 2: do not invert input A/CLK
 Rem Bit 3: do not invert input B/DIR
 Rem Bit 4: set input CLR/LATCH as CLR input
 Rem Bit 5: enable input CLR/LATCH
 Cnt Mode (1, 100000b)
 Cnt SE Diff(0000b)
                          'all inputs single-ended
                          'start counter 1
 Cnt Enable(0001b)
 •••
Event:
 Cnt Latch(0001b)
                          'latch counter 1
 val = Cnt_Read_Latch(0001b) 'read latch value
```

15.2.2 Four Edge Evaluation

This mode determines clock and direction of two signals, which are phase-shifted by 90 degrees to the inputs A and B. The count direction is determined by the temporal sequence of the rising and falling edges of the two input signals.

Programming example

15.3 Using PWM Counter

In this operating mode, an internal reference clock generator clocks the counter with a signal frequency of 100 MHz. The frequency and duty cycle can be read as well as high time and low time.

```
#Include ADwin-X.inc
#Define frequency FPAR_1
#Define dutycycle FPAR 2
#Define hightime PAR 1
#Define lowtime PAR 2
Init:
 Cnt PW Enable(0)
                          'stop all counters
 Rem set operation mode of counter 1:
 Rem Bits 0..5: no importance
 Rem Bit 6: detect rising edge as PWM signal
 Rem Bit 7: input B/DIR as PWM input
 Cnt Mode (1,01000000b)
 Cnt SE Diff(1111b)
                          'all inputs differential
 Cnt PW Enable(00000001b) 'start PWM counter 1
 •••
Event:
```

```
...
```

```
Rem latch counter 1

Cnt_PW_Latch(0001b)

Rem read frequency and duty cycle

Cnt_Get_PW(1, frequency, dutycycle)

Rem read high time and low time

Cnt_Get_PW_HL(1, hightime, lowtime)
```

There are several registers assigned to each PWM counter being described below. If, like in the example above, PWM counters are evaluated with standard instructions Cnt_Get_PW and Cnt_Get_PW_HL, no further knowledge is required about PWM registers. Use the evaluation with PWM registers for special solutions only.

In order to evaluate PWM signals, the counter values of the current and the 2 preceding counter values are stored in latch registers, both for rising and falling edges. In addition, there is a "shadow register" for each of these 6 registers.

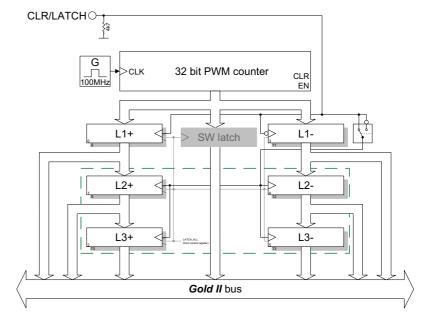
Register	Latch	Shadow register
Latch 1 for positive edges (current)	L1+	SL1+
Latch 2 for positive edges	L2+	SL2+
Latch 3 for positive edges	L3+	SL3+
Latch 1 for negative edges (current)	L1–	SL1–
Latch 2 for negative edges	L2–	SL2–
Latch 3 for negative edges	L3–	SL3–

The register values are changed with any edge like this:

- Rising edge:
 - Copy counter value to L1+
 - If rising edge is set as reference edge: Copy register L2+ to L3+ Copy register L1+ to L2+ Copy register L2- to L3-
 - Copy register L1- to L2-
- Falling edge:
 - Copy counter value to L1–
 - If falling edge is set as reference edge: Copy register L2– to L3– Copy register L1– to L2–

Reference clock generator

```
Example
```


Exception: evaluate PWM registers on your own

Copy register L2+ to L3+

Copy register L1+ to L2+

In addition, there is a single latch register where the counter value is copied by software (instruction Cnt_PW_Latch).

For any evaluation the PWM registers of levels 2 and 3 are used. First, the register values are copied to the shadow registers with Cnt_Sync_Latch and then evaluated. The calculation depends on the set reference edge:

Parameter	rising edge	falling edge
diagram	period T	period T
	, high time t _H	high time t _H
	High Low L3+ L2+ L1+ L3- L2-	High LowL3+ L2+ L3- L2- L1-
period	T = L2+ – L3+	T = L2- – L3-
high time	t _H = L3- – L3+	t _H = L2- – L3+
low time	$t_{L} = T - t_{H} = L2 + - L3$ -	$t_{L} = T - t_{H} = L3 + - L3$ -
frequency	f = 1 / T = 1 / (L2+ – L3+)	f = 1 / T = 1 / (L2- – L3-)
duty cycle	$g = t_H / T = (L3 - L3 +) / (L2 + -L3 +)$	$g = t_H / T = (L2 - L3 +) / (L2 - L3 -)$

How-to: Evaluate PWM registers

Software

16Software

You are programming *ADwin-X-A20* with simple *ADbasic* instructions. Basic instructions are described in the *ADbasic* manual.

Instructions for access of inputs / outputs and interfaces are found on following pages:

- page 46: General instructions
- page 53: Analog Inputs and Outputs
- page 77: Digital Inputs and Outputs
- page 110: Counter
- page 127: SSI interface
- page 135: CAN interface
- page 146: RSxxx Interface
- page 152: Profibus interface
- page 156: Profinet interface
- page 159: EtherCAT interface
- page 163: LS-Bus + ADwin-X-A20

16.1 General instructions

This section describes general instructions X-A20:

- Check_LED (page 47)
- Set_LED (page 48)
- Calc_Processdelay (page 49)
- CPU_Event_Config (page 50)
- Sync_All (page 51)

Check_LED re	eturns the status of a LED.		Check LED
Syntax		-	
#Includ	e ADwin-X.inc		
ret_val	= Check_LED(led_no)		
Parameters			
led_no	Number (13) of the LED.	LONG	
ret_val	 LED off. LED glows green. LED glows red. LED glows orange. 	LONG	
Notes			
cess 15 is	r-on, serves as status LED and LED 1 glows red. After t running and makes LED 1 blink green. If required, you th Stop_Process.	0.1	
See also			
Set_LED			
Valid for			
X-A20			

Example

#Include ADwin-X.inc

```
Init:
    If (Check_LED(2)=0) Then 'if LED is off ...
    Set_LED(2,3) '... light orange LED
    EndIf
```

Set_LED

Set_LED switches one LED on or off.

Syntax

#Include ADwin-X.inc

Set_LED(led_no, color)

Parameters

led_no	Number (13) of the LED.	LONG
color	 0: LED off. 1: LED glows green. 2: LED glows red. 3: LED glows orange. 	LONG

ADwin

Notes

After power-on, LED 1 glows red. After booting process 15 is running and makes LED 1 blink green. If required, you can stop the process with Stop_Process.

See also

Check_LED

Valid for

X-A20

Example

#Include ADwin-X.inc

Init: Set_LED(2,1)

'switch on LED 2, green

```
Event:
Rem ...
```

Finish:

 $\texttt{Set_LED}\,(\,\texttt{2}\,,\,\texttt{0}\,)$

'switch off LED 2

Calc_Processdelay converts a process frequency into processor ticks (processde- lay or cycle time). Syntax	Calc_ Processdelay
#Include ADwin-X.Inc	
<pre>ret_val = Calc_Processdelay(frequency)</pre>	
Parameters	
frequency Process frequency in Hertz.	
ret_val Number of process cycles (= Processdelay).	
Notes	
- / -	
See also	
Processdelay	
Valid for	
X-A20	
- / -	
Example #Include ADwin-X.Inc	
<pre>Init: Rem set Processdelay for frequency 150kHz Processdelay = Calc_Processdelay(150000)</pre>	

CPU_Event_	CPU_Event_Conf	ig configures the EVENT input.	
Config	 Syntax		
	#Include A	Dwin-X.Inc	
	CPU_Event_	Config (min_hold,edge,prescale)	
	Parameters		
	min_hold	Minimum time, which an event signal after an edge must be held to be accepted: 0: 15ns (default). 1: 50ns.	LONG
	edge	Type of edge, which is accepted: 1: rising edge (default). 2: fallig edge. 3: rising and falling edge.	LONG
	prescale	Number (115) of edges, after which an event signal is triggered (default: 1).	LONG
	Notes		
	The input Even	at works with TTL signals only.	
	If input signals of lowing:	contain glitches - as far as can't be avoided - you may do th	ne fol-
	 Set par 	ameter <pre>min_hold</pre> to 1, to filter glitches. of the input signal via an opto couple first.	
	See also		
	- / -		
	Valid for		
	X-A20		
	Example #Include ADwin	-X.Inc	
	Init: REM Configure	e input EVENT IN for mimimum time of 15 ns,	
	REM falling e	edge, 4 edges	
	CPU_Event_Cor	hfig (0,2,4)	
		ly controlled process starts each time, whe g edges have reached the input EVENT.	en

Sync_All

Sync_All starts specified actions synchronously.

Syntax

#Include ADwin-X.Inc

Sync All(pattern)

Parameters pattern

Bit pattern selecting the actions (see table below) to be LONG started: Bit = 0: No effect. Bit = 1: Start action synchronously. Bits 31:18 are reserved.

Notes

The action starting is similar to a standard instruction (most times). Configurations being made before do apply e.g. for the multiplexer or output value.

The availability of actions refers to the X-A20 options.

	Bit no.	Action	similar to
Analog input	0	Start an ADC conversion, mode single shot.	Start_Conv
	1	Start an ADC conversion, mode continuous.	Start_Conv
Analog output	2	Start D/A conversion on DAC1 and DAC2 with the values of the DAC registers.	Start_DAC
Digital input	3	Transfer current status of inputs DIO31:DIO00 into the input latch register.	Dig_Latch (0001b)
_	4	Transfer current status of inputs DIO63:DIO32 into the input latch register.	Dig_Latch (0010b)
Digital output	5	Transfer latch register to outputs DIO31:DIO00.	Dig_Latch (0100b)
	6	Transfer latch register to outputs DIO63:DIO32.	Dig_Latch (1000b)
Edge output	7	Start edge output on output FIFO 1.	Digout_ Fifo_Start
FIFO	8	Start edge output on output FIFO 2.	Digout_ Fifo_Start
	9	Stop the edge output and clear the edge output FIFO 1.	Digout_ Fifo_Clear
	10	Stop the edge output and clear the edge output FIFO 2.	Digout_ Fifo_Clear
Edge detec-	11	Clear the FIFO 1 of the edge detection unit.	Digin_Fifo_ Clear
tion unit FIFO	12	Clear the FIFO 2 of the edge detection unit.	Digin_Fifo_ Clear
	13	Clear the reference counter of the input FIFO 1.	- / -
	14	Clear the reference counter of the input FIFO 2.	- / -
Counter	15	Set all counters 17 to zero.	Cnt_Clear
Sync	16	Copy contents of all counters and PWM counters into buffers.	Cnt_Sync_ Latch
SSI decoder	17	Start reading of the SSI encoder (single shot only).	SSI_Start

Bits 0 and 1 must not be set at the same time. You must run **Start_Conv** with single shot mode first, to set the used channels und the gain (if applicable).

Bits 13 and 14 reset the counters, which create the time stamps for the edge detection units of the input FIFOs; see also Digout_Fifo_Read_Timer.


```
See also
  Start_Conv, Start_DAC, Dig_Latch, Digout_Fifo_Start, Digout_Fifo_Clear,
  Digin_Fifo_Clear, Cnt_Clear, Cnt_Sync_Latch, SSI_Start
Valid for
  X-A20
Example
#Include ADwin-X.Inc
Dim i As Long
Init:
 Write DAC(1,3500)
                           'initialize DAC 1
 Write_DAC(1,3500) 'initialize DAC 1
Write_DAC(2,65535) 'initialize DAC 2
 REM Set channels DI015:DI000 as outputs, DI031:DI016 as inputs
 {\tt Conf_DIO(0011b)}
 Digout_Write_Latch1(0) 'Set all output bits to 0
                           'initialize index
 i = 1
 Rem initialize A/D conversion for Sync_All:
 Rem ADC 1, gain 1, single shot (!)
 Start_Conv(1b, 0, 1)
 Wait_EOC()
                            'wait for end of conversion
Event:
 Rem start ADC (single shot), both DAC, latch digital channels
 Rem DIO31:0 synchronously
 Sync_All(101101b)
 Wait EOC()
                          'Wait for end of conversion
 Rem Read ADC
 Par_1 = Read_ADC(1)
 Write_DAC(1, Par_1) 'set DAC 1
 Write_DAC(2, Par_1 * 3.5) 'set DAC 2
 Par_2 = Digin_Read_Latch1() 'read input bits and ...
 Digout Write Latch1 (Par 1) 'output in next event cycle
 If (i=1000) Then End
                          'End process after 1000 repetitions
 Inc(i)
                            'Increment index
```


16.2 Analog Inputs and Outputs

This section describes the following instructions:

- DAC (page 54)
- DAC12 (page 55)
- Start_DAC (page 56)
- Write_DAC (page 57)
- ADC (page 58)
- ADC24 (page 59)
- ADC2 (page 61)
- ADC4 (page 62)
- ADC8 (page 63)
- ADC2_24 (page 64)
- ADC4_24 (page 65)
- ADC8_24 (page 66)
- Read_ADC (page 67)
- Read_ADC24 (page 68)
- Read_ADC_Packed (page 69)
- Read_ADC8 (page 70)
- Read_ADC8_24 (page 71)
- Start_Conv (page 72)
- Start_Conv_PGA (page 74)
- Wait_EOC (page 76)

Analog Inputs and Outputs DAC

DAC

DAC outputs a defined voltage on a specified analog 16 bit output.

Syntax

```
#Include ADwin-X.inc
DAC (dac_no,value)
```

Parameters

dac_no	Number of analog 16 bit output (12).	LONG
value	Value in digits, which defines the voltage to be output (065535).	LONG

Notes

If you specify value beyond the permissible value range, it will automatically be set to the system-specific minimum or maximum value.

The conversion time is 1 µs.

The voltage range is -10V...+10V = 20V. With the following formula, you can calculate the measured voltage from the returned digital value.

voltage = $\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$

See also

DAC12, ADC, Start_DAC, Write_DAC

Valid for

X-A20M1, X-A20F

Example

```
#Include ADwin-X.inc
```

Rem Digital proportional controller **#Define** set_to **Par_1** 'set point **#Define** gain **Par_2** 'gain factor **#Define** diff **Par_3** 'control deviation **#Define** out **Par_4** 'actuating value

Init:

Processdelay = 10000

Event:

```
diff = set_to - ADC(1) 'calculate control deviation
out = diff * gain 'calculate actuating value
DAC(1, out) 'output actuating value
```


DAC12

DAC12 outputs a defined voltage on a specified analog 12 bit output.

Syntax

#Include ADwin-X.inc

DAC12 (dac_no,value)

Parameters

dac_no	Number (12) of analog 12 bit output.	LONG	
value	Value in digits (0, 16,65520), which defines the volt- age to be output.	LONG	

Notes

If you specify value beyond the permissible value range, it will automatically be set to the system-specific minimum or maximum value.

The conversion time is in the range of $500...1000 \, \mu s$.

If the DAC serves the comparator signal (see below), we recommend to set the voltage in the **Init:** or **LowInit:** section and then wait with **IO_Sleep** until the voltage has been safely set.

Bits 15:4 of value are processed as digit value, bits 3:0 are ignored.

Bit no.	31:24	15:4	3:0
Content	0	12-bit value	-

The voltage range is -10V...+10V = 20V. With the following formula, you can calculate the measured voltage from the returned digital value.

voltage =
$$\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$$

The outputs of the DAC are internally connected to the comparator inputs. The set DAC voltage serves as comparator signal, i.e. a digital signal with a lower voltage is processed as level Low, with a higher voltage as level High. The comparator signal must be in the range 0...5 Volt to have the comparator run correctly.

See also

DAC, ADC, Start_DAC, Write_DAC, IO_Sleep

Valid for

X-A20M1, X-A20F

Example

#Include ADwin-X.inc Rem example for the use of comparator inputs

LowInit:

```
      DAC12 (1, 42598)
      'set +3V comp. level. channels 1..8

      DAC12 (2, 39321)
      'set +2V comp. level, channels 9..12

      IO Sleep (100000)
      'wait 1 ms
```

Event:

Rem use comparator inputs

Start_DAC	Start_DAC starts the convers	sion or the output of all 16 bit DAC.
	#Include ADwin-X.inc	
	Start_DAC()	
	Parameters	
	-/-	
	Notes	
	_	n the output register of a 16 bit DAC.
	You can also start a convers	sion with Sync_all.
	See also	
	DAC, DAC12, Write_DAC, S	Sync_All
	Valid for	
	X-A20M1, X-A20F	
	Example REM Simultaneous output REM on outputs DAC 1 and #Include ADwin-X.inc Dim i As Long	of two different signal waveforms d 2.
	<pre>Init: Processdelay = 10000 i=0</pre>	
	Write_DAC(1,i)	'Set output register DAC1
	Write_DAC(2,65535-i)	'Set output register DAC2
	<pre>Event: Start_DAC() Write_DAC(1,i) Write_DAC(2,65535-i) Inc(i) If (i=65535) Then i=0</pre>	'Start output of all DAC 'Set output register DAC1 'Set output register DAC2

Write DAC writes	Write_DAC writes a digital value into the output register of a 16 bit DAC. Write_DAC				
Syntax					
#Include AD	vin-X.inc				
Write_DAC(da	ac_no,value)				
Parameters					
dac_no	Number of analog 16 bit output (12).	LONG			
value	Value in digits, which defines the voltage to be output (065535).	LONG			
Notes					
The conversion	into output voltage is started by <pre>Start_DAC.</pre>				
	alue beyond the permissible value range, it will automatically m-specific minimum or maximum value.	/ be			
See also					
DAC, DAC12, S	Start_DAC				
Valid for					
X-A20M1, X-A2	0F				
REM on outputs REM The signal REM can be fil #Include ADwin Dim i As Long	waveforms are stored in two DATA arrays and led before start of program from the PC.				
	= 10000 Pata_1[i]) 'Set output register DAC1 Pata_2[i]) 'Set output register DAC2				
Event: Start_DAC() Write_DAC(1,E Write_DAC(2,E Inc(i) If (i>1000) T	ata_2 [i]) 'Set output register DAC2				

ADC measures the voltage of an analog input and returns the corresponding digital value.

Syntax

#Include ADwin-X.inc ret_val = **ADC**(channel)

Parameters	
------------	--

channel	Number (18) of the analog input channel.	LONG
ret val	Measurement value in digits (065535).	LONG

Notes

ADC24 returns digital values with 24 bit resolution.

ADC is a combination of consecutive functions:

- Start Conv: Start measurement: Convert analog signal to a digital value.
- **Wait_EOC**: Wait for the end of conversion.
- **Read_ADC**: Read out digital value from the register and return it.

In the following cases, the instructions **Start_Conv**, **Wait_EOC** and **Read_ADC** should be used instead of **ADC**:

- Very short cycle times: Processdelay < 240 (s.a.).
- You want to use inevitable waiting times for additional program tasks.
 For example, several conversions can be processed faster than with ADC if you utilize the functions cleverly, see Using Waiting Times (page 157).

The measurement range is ist -10V...+10V = 20V, the gain is 1. With the following formula, you can calculate the measured voltage from the returned digital value.

voltage =
$$\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$$

The conversion time is 5μ s with X-A20M1 (including multiplexer settling time) and 1.25μ s with X-A20F.

Please note with X-A20F: If you select different channels with a conversion instruction (ADC... / Start_Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels.

Example: The change from ADC8 to ADC takes $5\mu s + 1.25\mu s$; the change from ADC (3) to ADC (2) takes $1.25\mu s + 1.25\mu s$.

See also

ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

Example

```
#Include ADwin-X.inc
#Define in_channel 1 'input channel
#Define in_value Par_1
```

Event:

```
Rem Measure analog input 1
in_value = ADC(in_channel) * 10900
```


ADC24 measures the voltage of an analog input and returns the corresponding digital value. The resolution of the return value is 24 bit.

Syntax

THELGE THE MAIL MALLE	#Include	ADwin-X.Inc
-----------------------	----------	-------------

ret_val = ADC24(channel)			
Parameters			
channel	Number (18) of the analog input channel.	LONG	
ret_val	Measurement value in digits $(016777215 = 2^{24}-1).$	LONG	

Notes

ADC returns digital values with 16 bit resolution.

The return value of ADC24 contains an 18 bit measurement value in bits 23:6; bits 5:0 are always zero.

Bit no.	31:24	23:16	15:6	5:0
Content	0	18-bit meas. value		0

ADC24 is a combination of consecutive functions:

- Start_Conv: Start measurement: Convert analog signal-considering the gain factor-to a digital value.
- Wait_EOC: Wait for the end of conversion.
- **Read_ADC24**: Read out digital value from the register and return it.

If you select a non-existing input channel the measurement value is undefined.

In the following cases, you should use the instructions **Start_Conv**, **Wait_EOC** and **Read ADC24** instead of **ADC24** in the following cases:

- Very short cycle times: Processdelay < 200: ADC cannot be executed during the cycle time.
- High internal resistance (>3kΩ) of the voltage source of the measurement signal: This increases the settling time of multiplexer.
- You want to use inevitable waiting times for additional program tasks.
 For example, several conversions can be processed faster than with ADC24 if you utilize the functions cleverly, see Using Waiting Times (page 157).

The measurement range is 20 Volt (input voltage range: -10V...10V). With the following formula, you can calculate the measured voltage from the returned digital value:

voltage =
$$\frac{\text{measurement range}}{16777216} \cdot (\text{digits} - 8388608_{\text{bipolar}})$$

The conversion time is $5\mu s$ with X-A20M1 (including multiplexer settling time) and $1.25\mu s$ with X-A20F.

Please note with X-A20F: If you select different channels with a conversion instruction (ADC... / Start_Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels.

Example: The change from ADC8 to ADC24 takes $5\mu s + 1.25\mu s$; the change from ADC (3) to ADC (2) takes $1.25\mu s + 1.25\mu s$.

See also

ADC, ADC2, ADC4, ADC8, ADC2_24, ADC4_24, ADC8_24, Read_ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_ Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

Example

#Include ADwin-X.Inc Dim iw As Long Init: Processdelay = 10000 Event: REM Measure voltage of analog input 1 iw = ADC24(1) REM Write measurement value to global variable, so it REM can be read from the PC. Par_1 = iw

ADC2 measures the voltages of 2 selected analog inputs and returns the corresponding digital values (16 bit) in an array.

Syntax

#Include ADwin-X.inc

ADC2(array[], array_idx, channel_group)

Parameters

array[]	Array to hold the measurement values of the two selected input channels.	ARRAY
		LONG
array_idx	Array element, which holds the first measurement value.	LONG
channel_ group	 Selected channel group: 0: Channels 1 and 2. 1: Channels 3 and 4. 2: Channels 5 and 6. 3: Channels 7 and 8. 	LONG

Notes

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage = $\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$

The conversion time is 1.82µs (added for both channels).

If you select different channels with a conversion instruction (ADC... / Start_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. Example: The change from ADC8 to ADC2 takes 5μ s + 1.82 μ s; the change from ADC2 (0) to ADC2 (3) takes 1.82 μ s + 1.82 μ s.

See also

ADC, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example

```
#Include ADwin-X.inc
#Define in_array Data_1
```

```
Dim in_array[2000] As Long
Dim array_idx As Long
```

Init:

 $array_idx = 1$

Event:

Rem measure inputs 3..4
ADC2(in_array, array_idx, 1)
array_idx = array_idx + 2
If (array_idx > 1992) Then array_idx = 1

ADC4 measures the voltages of 4 selected analog inputs and returns the corresponding digital values (16 bit) in an array.

Syntax

#Include ADwin-X.inc

ADC4 (array[], array_idx, channel_group)

Parameters

array[]	Array to hold the measurement values of the four selected input channels.	ARRAY LONG
array_idx	Array element, which holds the first measurement value.	LONG
channel_ group	Selected channel group: 0: Channels 14. 1: Channels 58.	LONG

Notes

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage = $\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$

The conversion time is 2.86 µs (added for all channels).

If you select different channels with a conversion instruction (ADC... / Start_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. Example: The change from ADC8 to ADC4 takes $5\mu s + 2.86\mu s$; the change from ADC4 (0) to ADC4 (1) takes $2.86\mu s + 2.86\mu s$.

See also

ADC, ADC2, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example

#Include ADwin-X.inc
#Define in array Data 1

Dim in_array[2000] As Long Dim array idx As Long

Init:

array_idx = 1

Event:

Rem measure input 1..4
ADC4(in_array, array_idx, 0)
array_idx = array_idx + 4
If (array_idx > 1992) Then array_idx = 1

ADC8 measures the voltages of the analog inputs 1...8 and returns the corresponding digital values (16 bit) in an array.

Syntax

#Include A	Dwin-X.inc
------------	------------

	/	E 3		
ADC8	(array	·LL,	array	ıdx

Parameters

array[]	Array to hold the measurement values of the input channels 18.	ARRAY
		LONG
array_idx	Array element, which holds the first measurement value.	LONG

Notes

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage = $\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$

The conversion time is $5\mu s$ (added for all channels).

If you select different channels with a conversion instruction (ADC... / Start_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. Example: The change from ADC to ADC8 takes $1.25\mu s + 5\mu s$.

See also

ADC, ADC2, ADC4, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example

```
#Include ADwin-X.inc
#Define in_array Data_1
```

```
Dim in_array[2000] As Long
Dim array_idx As Long
```

Init:

 $array_idx = 1$

Event:

```
Rem measure inputs 1..8
ADC8(in_array, array_idx)
array_idx = array_idx + 8
If (array_idx > 1992) Then array_idx = 1
```


ADC2_24 measures the voltages of 2 selected analog inputs (18 bit) and returns the corresponding digital values in an array. The resolution of the return values is 24 bit.

Syntax

```
#Include ADwin-X.inc
```

ADC2_24(array[], array_idx)

Parameters

array[]	Array to hold the measurement values of the two selected input channels.	
	F	LONG
array_idx	Array element, which holds the first measurement value.	LONG
channel_ group	 Selected channel group: 0: Channels 1 and 2. 1: Channels 3 and 4. 2: Channels 5 and 6. 3: Channels 7 and 8. 	LONG

Notes

Each return value contains an 18 bit measurement value in bits 23:6; bits 5:0 are always zero.

Bit no.	31:24	23:16	15:6	5:0
Content	0	1	18-bit meas. value	

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage =
$$\frac{\text{measurement range}}{16777216} \cdot (\text{digits} - 8388608_{\text{bipolar}})$$

The conversion time is 1.82µs (added for both channels).

If you select different channels with a conversion instruction (ADC... / Star_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. Example: The change from ADC8 to ADC2 24 takes $5\mu s + 1.82\mu s$; the change

from ADC2_24 (0) to ADC2_24 (3) takes $1.82\mu s + 1.82\mu s$.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC4_24, ADC8_24, Read_ADC, Read_ ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example

#Include ADwin-X.inc
#Define in_array Data_1

```
Dim in_array[2000] As Long
Dim array_idx As Long
```

```
Init :
    array_idx = 1
```

```
Event :
```

```
Rem Measure inputs 3..4
ADC2_24(in_array, array_idx, 1)
array_idx = array_idx + 2
If (array_idx > 1992) Then array_idx = 1
```


ADC4_24

ADC4_24 measures the voltages of 4 selected analog inputs (18 bit) and returns the corresponding digital values in an array. The resolution of the return values is 24 bit.

Syntax

ADC4_24(array[], array_idx)

Parameters

array[]	Array to hold the measurement values of the four selected input channels.	ARRAY LONG
array_idx	Array element, which holds the first measurement value.	LONG
channel_ group	Selected channel group: 0: Channels 14. 1: Channels 58.	LONG

Notes

Each return value contains an 18 bit measurement value in bits 23:6; bits 5:0 are always zero.

Bit no.	31:24	23:16	15:6	5:0
Content	0	1	8-bit meas. value	0

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage =
$$\frac{\text{measurement range}}{16777216} \cdot (\text{digits} - 8388608_{\text{bipolar}})$$

The conversion time is 2.86µs (added for all channels).

If you select different channels with a conversion instruction (ADC... / Start_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. Example: The change from ADC8 to ADC4_24 takes $5\mu s + 2.86\mu s$; the change from ADC4_24 (0) to ADC4_24 (1) takes $2.86\mu s + 2.86\mu s$.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC8_24, Read_ADC, Read_ ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example

```
#Include ADwin-X.inc
#Define in_array Data_1
Dim in_array[2000] As Long
Dim array_idx As Long
Init :
```

```
array_idx = 1
```

Event :

```
Rem Measure inputs 1..4
ADC4_24(in_array, array_idx)
array_idx = array_idx + 4
If (array_idx > 1992) Then array_idx = 1
```


ADC8_24

ADC8_24 measures the voltages of the analog inputs 1...8 (18 bit) and returns the corresponding digital values in an array. The resolution of the return values is 24 bit.

Syntax

```
#Include ADwin-X.inc
ADC8_24(array[], array_idx)
Parameters
```

array[]	Array to hold the measurement values of the input channels 18.	ARRAY LONG
array_idx	Array element, which holds the first measurement value.	LONG

Notes

ADC8 returns eight digital values with 16 bit resolution.

Each return value contains an 18 bit measurement value in bits 23:6; bits 5:0 are always zero.

Bit no.	31:24	23:16	15:6	5:0
Content	0	18-bit meas. value		0

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage =
$$\frac{\text{measurement range}}{16777216} \cdot (\text{digits} - 8388608_{\text{bipolar}})$$

The conversion time is 5µs (added for all channels).

If you select different channels with a conversion instruction (ADC... / Start_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. Example: The change from ADC to ADC8_24 takes $1.25\mu s + 5\mu s$.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, Read_ADC, Read_ ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example

#Include ADwin-X.inc
#Define in_array Data_1

```
Dim in_array[2000] As Long
Dim array idx As Long
```

Init :

array_idx = 1

Event :

```
Rem Measure inputs 1..8
ADC8_24(in_array, array_idx)
array_idx = array_idx + 8
If (array_idx > 1992) Then array_idx = 1
```


Read ADC returns a converted value with 16-bit resolution from an A/D-converter. Read_ADC Syntax **#Include** ADwin-X.inc ret_val = Read_ADC(channel) **Parameters** LONG Number (1...8) of the converter to read. channel ret val Measurement value in digits (0...65535). LONG Notes **Read ADC24** returns a converted value with 24-bit resolution. With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula: voltage = $\frac{\text{measurement range}}{(5526)} \cdot (\text{digits} - 32768_{\text{bipolar}})$ 65536 See also ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start Conv PGA, Wait EOC Valid for X-A20M1, X-A20F Example **#Include** ADwin-X.inc Init: Rem start conversion on channel 3, gain 1, single shot **Start Conv**(100b,0,1) Event: Wait EOC() 'wait for end of conversion **Par 1** = **Read ADC**(3)'read value from channel 3 Rem start next conversion on channel 3 **Start Conv**(100b, 0, 1)

R	le	а	d	Α	D	C	24

Read_ADC24 returns a converted value with 24-bit resolution from an A/D-converter.

ADwin

Syntax

•		
#Include A	Dwin-X.inc	
ret_val =	Read_ADC24(channel)	
Parameters		
channel	Number (18) of the converter to read.	LONG
ret_val	Measurement value in digits $(016777215 = 2^{24}-1).$	LONG

Notes

Read ADC returns a digital value with 16 bit resolution.

Each return value contains an 18-bit measurement value in bits 23:6; bits 5:0 are always zero.

Bit no.	31:24	23:16	15:6	5:0		
Content	0	1	18-bit meas. value			

With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from the returned digital value with the formula:

voltage =
$$\frac{\text{measurement range}}{16777216} \cdot (\text{digits} - 8388608_{\text{bipolar}})$$

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ ADC, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_ Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

Example

#Include ADwin-X.inc

Init:

Rem start conversion on channel 5, gain 2, single shot
Start_Conv(10000b,1,1)

Event:

```
Wait_EOC() 'wait for end of conversion
Par_1 = Read_ADC24(5) 'read value from channel 5
Rem start next conversion on channel 5
Start_Conv(10000b,1,1)
```


Read_ADC_Pack	ed returns the converted values of 2 channels as a packed value.	Read_ADC_					
Syntax	Syntax						
#Include A	Dwin-X.Inc						
ret_val = 1	Read_ADC_Packed(ch_pair)						
Parameters							
ch_pair	Number (18) to select a channel pair:LONG1: Channels 1 and 2.2: Channels 3 and 4.3: Channels 5 and 6.4: Channels 7 and 8.						
ret_val	32 bit value holding 2 measurement values of 16 bit LONG (065535) each: Bits 015: Value of channel n. Bits 1631: Value of channel n+1.						
Notes							
	tage range –10V+10V = 20V and gain factor 1, you can calcu- ured voltage from a returned digital value with the formula:						
V	voltage = $\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$						
See also							
ADC, ADC2, A ADC, Read_A PGA, Wait_EC							
Valid for							
X-A20F							
Example							

#Include ADwin-X.Inc Init:

Rem start conversion on channels 3+4 Start_Conv(1100b,0,1)

Event:

```
Wait_EOC() 'wait for end of conversion
Par_1 = Read_ADC_Packed(2) 'read value from channels 3+4
Par_3 = Par_1 And OFFFFh 'value channel 3
Par_4 = Shift_Right(Par_1,16) And OFFFFh 'value channel 4
Rem start next conversion on channels 3+4
Start_Conv(1100b,0,1)
```


Read_ADC8	Read_ADC8 returns converted values with 16-bit resolution from the analog inputs 1 in an array.
	Syntax
	#Include ADwin-X.inc
	Read_ADC8 (array[], array_idx)
	Parameters
	Array [] Array to hold the measurement values of the input LONG channels 18.
	array_idx Array element, which holds the first measurement LONG value.
	Notes
	With input voltage range –10V+10V = 20V and gain factor 1, you can calcu- late the measured voltage from a returned digital value with the formula:
	voltage = $\frac{\text{measurement range}}{65536} \cdot (\text{digits} - 32768_{\text{bipolar}})$
	See also
	ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8_24, Start_Conv, Start_ Conv_PGA, Wait_EOC
	Valid for
	X-A20F
	Example #Include ADwin-X.inc Dim Data_1[2000] As Long
	Dim data_idx As Long
	Init:
	Rem start conversion on channels 18
	<pre>Start_Conv(0FFh,0,1) data_idx = 1</pre>
	Event:
	Wait_EOC() 'wait for end of conversion Read ADC8 (Data 1, data idx) 'read values
	$data_idx = data_idx + 8$
	If (data_idx > 1992) Then data_idx = 1
	Rem start next conversion on channels 18 Start Conv(0FFh,0,1)

Read_ADC8_24 returns converted values with 24-bit resolution from the analog inputs Read_ADC8_24 1...8 in an array. Syntax **#Include** ADwin-X.inc Read_ADC8_24 (array[], array_idx) Parameters Array to hold the measurement values of the input LONG array[] channels 1...8. Array element, which holds the first measurement | LONG | array_idx value. Notes With input voltage range -10V...+10V = 20V and gain factor 1, you can calculate the measured voltage from a returned digital value with the formula: voltage = $\frac{\text{measurement range}}{16777216} \cdot (\text{digits} - 8388608_{\text{bipolar}})$ 16777216 See also ADC, ADC2, ADC4, ADC8, ADC24, ADC2 24, ADC4 24, ADC8 24, Read ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Start_Conv, Start_ Conv PGA, Wait EOC Valid for X-A20F Example **#Include** ADwin-X.inc Dim Data_1[2000] As Long Dim data_idx As Long Init: Rem start conversion on channels 1..8 Start Conv(0FFh,0,1) data idx = 1Event: Wait EOC() 'wait for end of conversion Read_ADC8_24 (Data_1, data_idx) 'read values data_idx = data_idx + 8 If $(data_idx > 1992)$ Then $data_idx = 1$ Rem start next conversion on channels 1..8 $\texttt{Start}_\texttt{Conv}\,(\,\texttt{0FFh}\,,\,\texttt{0}\,,\,\texttt{1}\,)$

Start_Conv

Start_Conv starts the conversion of selected A/D converters for a single shot or continuous conversion.

Syntax

#Include ADwin-X.inc

Start_Conv(adc_pattern, gain, mode)

Parameters

adc_ pattern	Bit pattern that specifies, which converter/s should be started (only bits 07 can be used): Bit=1: start conversion. Bit=0: do not start conversion.								LON	G	
gain	0:	in facto Factor Factor	= 1, v	0	0			Ι.		LON	G
mode	Operating mode of conversion:LON1: Single shot.2: Mode "continuous", continuous conversion.								LON	G	
Bit no. in adc_patter	rn	31:8	7	6	5	4	3	2	1	0	
ADC number		_	8	7	6	5	4	3	2	1	

Notes

With X-A20M1, only a single bit may be set in adc_pattern; parameter gain is ignored and the gain factor is always set to 1 (±10V).

We recommend using the binary representation (suffix "b") for adc_pattern. It shows the allocation of bits to channel groups more clearly than decimal or hexadecimal representations, which can still be used if desired.

The conversion time (added for all channels) depends on the number of measured channels:

- 1 channel: max. 800kHz = 1.25µs.
- 2 channels: max. 550kHz = 1.82µs.
- 3 channels: max. 425kHz = 2.35µs.
- 4 channels: max. 350kHz = 2.86µs.
- 5 channels: max. 300kHz = 3.3µs.
- 6 channels: max. 250kHz = 4.0µs.
- 7 channels: max. 225kHz = 4.44 µs.
- 8 channels: max. 200kHz = 5.0µs.

Please note with X-A20F: If you select different channels with a conversion instruction (ADC... / Start_Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels.

Example: The change from ADC4 to Start_Conv (111b, ...) takes 2.86µs + 2.35µs; the change from Start_Conv (11b, ...) to Start_Conv (101b, ...) takes 1.82µs + 1.82µs.

Use **Start_Conv_PGA** (X-A20Fonly) to set different gain factors for all channels.

With continuous mode, the selected ADCs are continuously running conversions and providing measurement values. After the first start of continuous mode, you must check for the end of conversion with Wait_EOC once. Afterwards, you can read the most recent measurement values with Read ADC... instructions.

All **ADC** instructions set the operating mode single shot and therefore end a continuous conversion.

You can also start a conversion with **Sync All**.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv_PGA, Wait_EOC, Sync_All

Valid for

X-A20M1, X-A20F

Example

#Include ADwin-X.inc
Dim Data_3[2000] As Long
Dim data_idx As Long

Init:

Rem start continuous conversion with ADC 3, gain 1
Start_Conv(00000100b, 0, 2)
Rem check for end of conversion once
Wait_EOC()
data_idx = 1

Event:

Data_3[data_idx] = Read_ADC(3)
data_idx = data_idx + 1
If (data_idx > 1992) Then data_idx = 1
Rem Next conversion is started automatically

Start_Conv_PGA	Start_Conv_PGA starts the conversion of selected A/D converters with individual gain factors for a single shot or continuous conversion.										
	Syntax										
	#Include ADwin-X.inc										
	<pre>Start_Conv_PGA(adc_pattern, gain_pattern, mode)</pre>										
	Parameters										
	adc_ pattern	starte 1: st		bits 0 /ersion.	7 can be			s should	d be	LONG	
	gain_ pattern	ers. E 00b: 01b:	Each 2 b Factor =	oits set t = 1, volta = 2, volta	ies the g he factor age rang age rang	r for the je -10∖	e ADC: ∕…+10`		vert-	LONG	
	mode	1: S	ingle sh	ot.	onversio s", contii		convers	sion.		LONG	
	Bit no. in gain_ pattern	31:8	7	6	5	4	3	2	1	0	
	ADC number	_	8	7	6	5	4	3	2	1	
	Bit no. in gain_ pattern	31:8	15:14	13:12	11:10	9:8	7:6	5:4	3:2	1:0	
	ADC number	_	8	7	6	5	4	3	2	1	
	Notes										

We recommend using the binary representation (suffix "b") for the bit patterns. It shows the allocation of bits to channel groups more clearly than decimal or hexadecimal representations, which can still be used if desired.

The conversion time (added for all channels) depends on the number of measured channels:

- 1 channel: max. 800kHz = 1.25 µs.
- 2 channels: max. 550kHz = 1.82µs.
- 3 channels: max. 425kHz = 2.35µs.
- 4 channels: max. 350kHz = 2.86µs.
- 5 channels: max. 300kHz = 3.3µs.
- 6 channels: max. 250kHz = 4.0µs.
- 7 channels: max. 225kHz = 4.44 µs.
- 8 channels: max. 200kHz = 5.0µs.

If you select different channels with a conversion instruction (ADC... / Star_ Conv) than with the previous conversion instruction, the conversion time is extended: With the change, the conversion is processed twice, once with the previously selected channels and once with the newly selected channels. The same applies if you change gain_pattern.

Example: The change from ADC4 to Start_Conv (111b, ...) takes $2.86\mu s + 2.35\mu s$; the change from Start_Conv (11b, ...) to Start_Conv (101b, ...) takes $1.82\mu s + 1.82\mu s$.

With continuous mode, the selected ADCs are continuously running conversions and providing measurement values. After the first start of continuous mode, you must check for the end of conversion with **Wait_EOC** once. Afterwards, you can read the most recent measurement values with **Read_ADC**... instructions.

All **ADC** instructions set the operating mode single shot and therefore end a continuous conversion.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Wait_EOC

Valid for

X-A20F

Example

```
#Include ADwin-X.inc
Dim Data_3[2000] As Long
Dim data_idx As Long
```

Init:

Rem start continuous conversion with ADC 1..8, Rem gain 1 for channels 1..4, gain 2 for channels 5..8 Start_Conv_PGA(0FFh, 010101010000000b, 2) Rem check for end of conversion once Wait_EOC() data_idx = 1

Event:

Read_ADC8(Data_3, data_idx)'read 8 values
data_idx = data_idx + 8
If (data_idx > 1992) Then data_idx = 1
Rem Next conversion is started automatically

Wait_EOC

Wait_EOC waits for the end of conversion on the selected A/D converters.

Syntax

#Include ADwin-X.inc
Wait_EOC()
Parameters

- / -

Notes

ADC converters are selected for conversion with Start_Conv.

In single shot mode, **Wait_EOC** waits until all selected ADC have finished with conversion.

In continuous mode, the end of conversion must be checked only once after having started the first conversion.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_PGA

Valid for

X-A20M1, X-A20F

Example

#Include ADwin-X.inc Dim **Data_3**[2000] As Long Dim data idx As Long

Init:

Rem start continuous conversion with ADC 1..8, gain 1
Start_Conv(0FFh, 0, 2)
Rem check for end of conversion once
Wait_EOC()
data_idx = 1

Event:

Read_ADC8(Data_3, data_idx) 'read 8 values
data_idx = data_idx + 8
If (data_idx > 1992) Then data_idx = 1
Rem Next conversion is started automatically

16.3 Digital Inputs and Outputs

This section describes instructions to access digital channels:

- Conf_DIO (page 78)
- Digin_Filter_Init (page 87)
- Dig_Latch (page 79)
- Digin_Read_Latch1 (page 80)
- Digin_Read_Latch2 (page 81)
- Digout_Write_Latch1 (page 82)
- Digout_Write_Latch2 (page 83)
- Digin (page 84)
- Digin_Long1 (page 85)
- Digin_Long2 (page 86)
- Digin_Edge1 (page 88)
- Digin_Edge2 (page 89)
- Digout (page 90)
- Digout_Long1 (page 91)
- Digout_Long2 (page 92)
- Digout_Bits1 (page 93)
- Digout_Bits2 (page 94)
- Get_Digout_Long1 (page 95)
- Get_Digout_Long2 (page 96)
- Digin_Fifo_Read_Timer (page 97)
- Digin_Fifo_Clear (page 98)
- Digin_Fifo_Enable (page 99)
- Digin_Fifo_Full (page 100)
- Digin_Fifo_Read (page 101)
- Digout_Fifo_Read_Timer (page 102)
- Digout_Fifo_Clear (page 103)
- Digout_Fifo_Enable (page 104)
- Digout_Fifo_Empty (page 105)
- Digout_Fifo_Mode (page 106)
- Digout_Fifo_Start (page 107)
- Digout_Fifo_Write (page 108)

Conf_DIO

Conf DIO configures the digital channels DIO41:DIO00 in groups as inputs or outputs. Syntax

4Dwin

#Include ADwin-X.Inc

Conf	DIO (pattern)	

Parameters

i didiletero										
patterr	o B	Bit pattern that configures the digital channels as inputs LONG or outputs: Bit=0: Channels as inputs. Bit=1: Channels as outputs.								
Bit no. in pattern	7	6	5	4	3	2	1	0		
channels	DIO41	DIO40	DIO36: DIO39	DIO32: DIO35	DIO24 : DIO31	DIO16: DIO23	DIO08: DIO15	DIO00: DIO07		

Notes

The digital channels DIO41:DIO00 are initially configured as inputs after powerup (and can then not yet be used as outputs). They can only be configured in groups as inputs or outputs.

The digital channels DIO60:DIO42 are already configured as inputs and outputs and cannot be changed with Conf DIO. The digital channels are placed on 3 connectors.

We recommend using the binary representation (suffix "b"). It shows the allocation of bits to channel groups more clearly than decimal or hexadecimal representations, which can still be used if desired.

See also

Conf_DIO, Digin_Filter_Init, Digin, Digout, Digin_Fifo_Enable, Digin_Fifo_ Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example

#Include ADwin-X.Inc

Init:

Rem Configure DI015:00 as inputs and DI041:16 as outputs **Conf DIO**(11111100b)

Dig_Latch

Dig_Latch transfers digital information from inputs to the input latches and from output latches to the outputs.

Syntax

#Include ADwin-X.Inc

Dig_Latch(pattern)

Parameters

pattern

Bit pattern to select groups of digital channels to be LONG latched.

Bit no. in pattern	31:4	3	2	1	0
channels	-	outputs	outputs	inputs	inputs
_		DIO63: DIO32	DIO31: DIO00	DIO63: DIO32	DIO31: DIO00

Notes

With digital inputs, the instructions reads the input signals into the input latches. Read the values with Digin Read Latch1/2.

With digital outputs, the instruction passes the values of the output latches to the outputs. Write values into the latch register with **Digout_Write_Latch1**/2.

You can also start the transfer with Sync_All.

See also

Conf_DIO, Digin_Read_Latch1, Digin_Read_Latch2, Digout_Write_Latch1, Digout_Write_Latch2, Digin, Digout, Sync_All

Valid for

X-A20, X-A20+D, X-A20+DCT

Example

#Include ADwin-X.Inc

Init:

REM Set channels DI015:DI000 as outputs, DI031:DI016 as inputs
Conf_DI0(0011b)
Digout_Write_Latch1(0) 'Set all output bits to 0

Event:

Dig_Latch(0101b) 'latch inputs and outputs DI031:DI000
Rem further program
Par_1 = Digin_Read_Latch1() 'read input bits and ...
Digout Write Latch1(Par 1) 'output in next event cycle

Digin_Read_ Latch1	<pre>Syntax #Include ADwin-X.Inc ret_val = Digin_Read_Latch1() Parameters</pre>
	<pre>ret_val = Digin_Read_Latch1() Parameters</pre>
	Parameters
	ret_val Bit pattern. Each bit corresponds to a digital input (see _LONG table).
	Bit no 31 30 1 0 in ret_val
	Input DIO31 DIO30 DIO01 DIO00
	Notes
	We recommend first programming the specified channels as inputs using Conf_ DIO.
	The current status of the digital inputs can be transferred to the latch register with the following instructions: Dig_Latch Sync_All
	See also
	Conf_DIO, Dig_Latch, Digin_Read_Latch2, Digout_Write_Latch1, Digout_
	Write_Latch2, Digin, Digout, Sync_All Valid for
	X-A20+DCT
	Example #Include ADwin-X.Inc
	<pre>Init: REM Set channels DI015:DI000 as outputs, DI031:DI016 as inpu Conf_DI0(0011b)</pre>
	<pre>Digout_Write_Latch1(0) 'Set all output bits to 0</pre>
	Event: Dig_Latch(0101b) 'latch inputs and outputs DI031:DIO Rem further program
	<pre>Par_1 = Digin_Read_Latch1() 'read input bits and Digout_Write_Latch1(Par_1) 'output in next event cycle</pre>

Digin_Read_Latch2 returns the bits from the latch register for the digital inputs DIO60:DIO32.	Digin_Read_
Syntax	Latch2
#Include ADwin-X.Inc	
ret_val = Digin_Read_Latch2()	
Parameters	
ret_val Bit pattern. Each bit corresponds to a digital input (see LONG table).	
Bit no 31:29 28 27 1 0 in ret_val	
Input – DIO60 DIO59 DIO33 DIO32	
Notes	
We recommend first programming the specified channels as inputs using Conf_ DIO.	
The current status of the digital inputs can be transferred to the latch register with the following instructions: Dig_Latch Sync_All	
See also	
Conf_DIO, Dig_Latch, Digin_Read_Latch1, Digin_Read_Latch2, Digout_ Write_Latch1, Digout_Write_Latch2, Digin, Digout, Sync_All	
Valid for	
X-A20, X-A20+D, X-A20+DCT	
Example #Include ADwin-X.Inc	
Init: <i>REM Set channels DI039:DI032 as outputs</i>	
<pre>Conf_DIO(110000b) Digout_Write_Latch2(0) 'Set all output bits to 0</pre>	
Event:	
Dig_Latch(1010b) 'latch inputs and outputs 3263 Rem further program	
<pre>Par_1 = Digin_Read_Latch2() 'read input bits and Digout_Write_Latch1(Par_1)'output in next event cycle</pre>	

Digital Inputs and Outputs Digout_Write_Latch1

Digout_Write_ Latch1	Digout_Write_Latch1 writes a 32 bit value into the latch register for the digital outputs DIO31:DIO00.								
Lateni	Syntax								
	#Include ADwin-X.Inc								
	<pre>Digout_Write_Latch1(pattern)</pre>								
	Parameters								
	patternBit pattern. Each bit corresponds to a digital output (see LONGtable).								
	Bit no 31 30 1 0 in ret_val								
	Output DIO31 DIO30 DIO01 DIO00								
	Notes								
	The specified channels must first be programmed as outputs using Conf_DIO.								
	You can set a single digital output directly with Digout .								
	See also								
	Conf_DIO, Dig_Latch, Digin_Read_Latch1, Digin_Read_Latch2, Digout_ Write_Latch1, Digout_Write_Latch2, Digin, Digout, Sync_All								
	Valid for								
	X-A20+DCT								
	Example #Include ADwin-X.Inc								
	<pre>Init: REM Set channels DI015:DI000 as outputs, DI031:DI016 as inputs Conf_DI0(0011b) Digout_Write_Latch1(0)</pre>								
	<pre>Event: Dig_Latch(0101b) 'latch inputs and outputs DI031:DI000 Rem further program Par_1 = Digin_Read_Latch1() 'read input bits and Digout_Write_Latch1(Par_1)'output in next event cycle</pre>								

Digout_Write_Latch2 writes a puts DIO41:DIO32.	a 32 bit value int	o the lato	h register	for the d	igital out-	Digout_Write_ Latch2
Syntax						
#Include ADwin-X.Inc						
Digout_Write_Latch2 (pa	ttern)					
Parameters						
pattern Bit pattern. Ea table).	ach bit correspo	nds to a c	ligital outp	ut (see	LONG	
Bit no 31:10 in ret_val	9 8		1	0		
Output –	DIO41 DIO4	40	DIO33	DIO32	_	
Notes						
The specified channels must f	irst be programr	ned as o	utputs usii	ng Conf_	DIO.	
You can set a single digital ou	tput directly with	Digout				
See also						
Conf_DIO, Dig_Latch, Digin Write_Latch1, Digout_Write_L				ch2, Dig	out_	
Valid for						
X-A20, X-A20+D, X-A20+DCT	-					
Example #Include ADwin-X.Inc						
Init: <i>REM Set channels DI039:</i> Conf DIO(110000b)	DIO32 as out	puts				
Digout_Write_Latch2(0)	'Set all c	utput l	oits to	0		
Event:						
Dig_Latch(1010b) Rem further program Par_1 = Digin_Read_Latcl	'latch inp n2() 'read i		-		63	
Digout_Write_Latch1(Par	_1)'output i	n next	event d	cycle		

Digital Inputs and Outputs Digin

Digin

Digin returns the TTL level of a digital input DIO60:DIO00.

Syntax

- ,		
#Include AD	win-X.inc	
ret_val = D	igin (channel_no)	
Parameters		
channel_no	Number (060) of digital input.	LONG
ret_val	TTL level of the selected input: 1: TTL level is high. 0: TTL level is low.	LONG

Notes

For any digital channel configured as output **Digin** has no function.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as inputs.

The instruction is used to read the TTL levels of a few digital inputs. With more digital inputs, the instructions **Digin_Long1/2** are remarkably faster.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example

#Include ADwin-X.inc
Dim Data_1[10000] As Long As Fifo

Event:

```
Rem Check if input 0 has TTL level high
If (Digin(0) = 1) Then
Data_1 = ADC(1) 'read value of ADC 1
EndIf
```


Digin_Long1 returns the values of the digital inputs DIO31:DIO00. Digin_Long1 Syntax **#Include** ADwin-X.Inc ret val = Digin Long1() **Parameters** ret_val Bit pattern that corresponds to the TTL-levels at the LONG digital inputs (see table). 1: TTL-level high. 0: TTL-level low. Bit number 31 30 1 0 ... in ret_val Input DIO31 **DIO30 DIO01** DIO00 . . . Notes For any digital channel configured as output Digin Long1 will return an undefined value. Conf DIO configures digital channels DIO31:DIO00 as inputs or outputs in groups of 8. See also Conf_DIO, Digin_Long2, Digin_Edge1, Digin_Edge2, Digout, Digout_Long1, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_Write Valid for X-A20+DCT Example **#Include** ADwin-X.Inc Init: Rem Configure DI015:00 as inputs and DI031:16 as outputs Conf DIO(1100b) Event: Par 1 = Digin Long1() 'read values of inputs (DI015:00)

Dic	jin_	Lon	α2
- 15	····_		9-

Digin_Long2 returns the values of the digital inputs DIO60:DIO32.

#Include ADwin-X.Inc

ret val = Digin Long2()

Parameters

Syntax

ret_val Bit pattern that corresponds to the TTL-levels at the LONG digital inputs (see table).

- 1: TTL-level high.
- 0: TTL-level low.

Bit number in ret_val	31:29	28	27	 1	0
Input	_	DIO60	DIO59	 DIO33	DIO32

Notes

For any digital channel configured as output **Digin_Long2** will return an undefined value.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as inputs.

See also

Conf_DIO, Digin_Long1, Digin_Edge1, Digin_Edge2, Digout, Digout_Long2, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example

#Include ADwin-X.Inc

Init:

Rem Configure DI015:00/DI039:32 as inputs, Rem and DI031:16/DI041:40 as outputs Conf DI0(11001100b)

Event:

```
Par_1 = Digin_Long1() 'read inputs DI015:00
Par_2 = Digin_Long2() 'read inputs DI039:32/DI059:42
```


Digin_Filter_Init

Digin_Filter_Init sets the filter duration for all digital inputs.

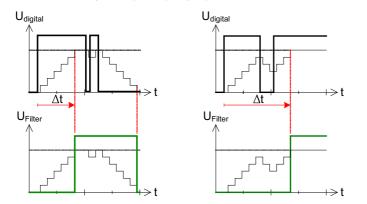
Syntax

#Include ADwin-X.inc

Digin_Filter_Init(filter_value)

Parameters

filter_	Filter duration, given in units (165535) of 20ns.	LONG
value	The value 0 (zero) disables the filter.	


Notes

The filter suppresses spikes of a signal. The number of spikes should be small compared to the pulse width of the signal. The filter duration should be somewhat longer than the expected width of spikes.

The filter settings apply to all channels and also refer to the inputs of counters and SSI decoders. Each channel has its own filter. After power-up all filters are disabled.

The filter does not transfer an edge of the input signal directly to the output signal. According to the input signal, a counter is increased (High signal) or decreased every 20ns, in the range of 0... filter_value. If the counter value is 0, the output signal has level Low, at filter_value it is level High.

Please note: The filter delays edges of the resulting signal by the set filter duration. If spikes occur, edges may delay slightly in addition.

The plot shows filtering of 2 example signals (black line, top) with spikes. The step line displays the filter counter values. In the right example, the resulting edge is delayed by the spike. The filter (using filter_value = 6) delays edges of the resulting signal; the delay Δt may increase according to the number of spikes.

Please note: The input filter affects the time stamps for the edge detection unit of an input FIFO (see Digin_Fifo_Read_Timer). With enabled input filter, the time distance between two time stamps is an integer multiple of 20ns. In other words: there are either only even or only odd time stamps.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge1, Digin_Edge2, Cnt_Mode, SSI_Mode, Digin_Fifo_Read_Timer

Valid for

X-A20, X-A20+D, X-A20+DCT

Example

#Include ADwin-X.Inc

Init:

Conf_DIO(0000b)'Set DI031:00 as inputsDigin_Filter_Init(5)'set spike filter to 100ns

Event:

Par_1 = Digin_Long1() 'Read inputs DI031:00

Digin_Edge1 returns whether a positive or negative edge has occurred on digital inputs DIO31:DIO00.

ADwin

Syntax

#Include ADwin-X.inc

ret_val = Digin_Edge1(edge)

Parameters

edge		Kind of de 1: Detec 0: Detec	ct positi	0				LONG
ret_va	al	at an inp below. Bit = 1: A	out. The	e each bits rep e mapping of has occurred occurred.	bits to i	0		LONG
	Bit no	3	1	30	2	1	0	

Bit no.	31	30	 2	1	0
Input	DIO31	DIO30	 DIO02	DIO01	DIO00

Notes

A set bit in ret_val means, that a selected edge has been occurred at least once at the digital input since the previous query. Bit for output channels always return zero.

Conf_DIO configures digital channels DIO31:DIO00 as inputs or outputs in groups of 8.

A query with **Digin_Edge1** resets all bits to zero.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge2, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Read_Timer

Valid for

X-A20+DCT

Example

#Include ADwin-X.inc

Init:

Conf DIO(1100b)

'channels 15:0 as inputs

Event:

Rem check rising and falling edges, mask out outputs
Par_1 = Digin_Edge1(1) And 0Fh

Par_2 = Digin_Edge1(0) And 0Fh

Rem output edge changes to outputs
If (Par_1 + Par_2 > 0) Then
Digout_Bitsl(Shift_Left(Par_1, 16), Shift_Left(Par_2, 16))
EndIf

Digin Edge2 returns whether a positive or negative edge has occurred on digital Digin_Edge2 inputs DIO60:DIO32. Syntax **#Include** ADwin-X.inc ret_val = Digin_Edge2(edge) **Parameters** Kind of detected edge: LONG edqe 1: Detect positive edge. 0: Detect negative edge. Bit pattern where each bits represent an edge occurred LONG ret_val at an input. The mapping of bits to inputs is shown below. Bit = 1: An edge has occurred. Bit = 0: No edge occurred. 31:29 28 2 0 Bit no. 27 1 . . . DIO60 DIO59 DIO34 DIO33 Input _ DIO32 ... Notes A set bit in ret_val means, that a selected edge has been occurred at least once at the digital input since the previous query. Bit for output channels always return zero. Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as inputs. A query with Digin Edge2 resets all bits to zero. See also Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge1, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Read_Timer Valid for X-A20, X-A20+D, X-A20+DCT Example **#Include** ADwin-X.inc Init: Rem Configure DI015:00/DI039:32 as inputs, Rem and DI031:16/DI041:40 as outputs Conf DIO (11001100b) Event: Rem check rising and falling edges, mask out outputs Par 1 = Digin Edge2(1) And 0Fh Par 2 = Digin Edge2(0) And 0Fh Rem output edge changes to outputs If $(Par 1 + Par_2 > 0)$ Then Digout Bits2 (Shift Left (Par 1, 16), Shift Left (Par 2, 16)) EndIf

Digital Inputs and Outputs Digout

Digout

Digout sets a single output DIO41:DIO00 to the level "high" or "low".

Syntax

#Include ADwin-X.Inc

Digout(channel_no,level)

Parameters

channel_no	Number (041) of the digital output DIO41:DIO00.	LONG
level	New status of the selected output: 0: Low level. 1: High level.	LONG

ADwin

Notes

For any digital channel configured as input **Digout** will have no effect.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as inputs.

The digital channels are placed on three connectors.

The instruction is used to set the TTL levels of a few digital outputs. With more digital outputs, the instructions **Digout_Long1/2** are remarkably faster.

See also

Conf_DIO, Digin, Digout_Long1, Digout_Long2, Digout_Bits1, Digout_Bits2, Get_Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example

#Include ADwin-X.Inc

Init:

Rem Configure DIO31:00 as outputs Conf DIO(1111b)

Par 2 = **OAAAAAAA** 'Bit pattern for even bits

Event:

Digout (**Par_2**, **1**)

'set outputs to level high

Digout_Lo:	ng1 sets or clea	ars the TTL	levels of c	outputs	DIO31:E	01000 with	a bit pattern.	Digout_Long1
Syntax								0 _ 0
#Includ	le ADwin-X.I	inc						
Digout_	Long1 (patte	ern)						
Parameters								
patter	Bit = 0:	ern that set Set output Set output	to level "	low".	s of digita	I outputs:	LONG	
	Bit number in pattern	31	30		1	0		
	Output	DIO31	DIO30		DIO01	DIO00	<u>.</u>	
Notes								
	digital channel c <mark>IO</mark> configures c f 8.				_			
See also								
Digout_L	O, Digin, Digou .ong1, Get_Dig [;] ifo_Write							
Valid for								
X-A20+D	СТ							
Example #Include	ADwin-X.Inc							
Conf_DIO Rem bit	igure DI015 (0011b) pattern for 5555555			and I	DIO31:1	6 as inj	puts	
Event: Digout_L	ongl(Par_1)	'0	utput b	its I	01015:0	0		

Syntax #Include ADwin-X.Inc Digout_Long2 (pattern) Parameters pattern Bit pattern that sets the TTL levels of digital outputs: Bit = 0: Set output to level "low". Bit = 1: Set output to level "high". Bit number 31:10 9 8 1 0 in pattern Output - DIO41 DIO40 DIO33 DIO Notes For any digital channel configured as input, Digout_Long2 will have n Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1	igout_Long2	Digout_Long2 sets or clears the TTL levels of outputs DIO41:DIO32 with a bit pat
<pre>bigout_Long2 (pattern) Parameters pattern Bit pattern that sets the TTL levels of digital outputs: Bit = 0: Set output to level "low". Bit = 1: Set output to level "low". Bit = 1: Set output to level "high". <u>Bit number 31:10 9 8 1 0 in pattern Output - DIO41 DIO40 DIO33 DIO Notes For any digital channel configured as input, Digout_Long2 will have an conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DIO39:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event: </u></pre>	0 _ 0	Syntax
Parameters pattern Bit pattern that sets the TTL levels of digital outputs: Bit = 0: Set output to level "low". Bit = 1: Set output to level "high". Bit number 31:10 9 8 1 0 in pattern Output - DIO41 DIO40 DIO33 DIO Notes For any digital channel configured as input, Digout_Long2 will have n conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1 Digout_Long1, Get_Digout_Long2, Digin_Fito_Enable, Digout_Fito_ Digout_Fito_Write Valid for x-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DIO39:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = OAAAAAAAA Event:		#Include ADwin-X.Inc
pattern Bit pattern that sets the TTL levels of digital outputs: Bit = 0: Set output to level "low". Bit = 1: Set output to level "high". Bit number 31:10 9 8 1 0 in pattern Output - DIO41 DIO40 DIO33 DIO Notes For any digital channel configured as input, Digout_Long2 will have n Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1 Digout_Long1, Get_Digout_Long2, Digin_Fito_Enable, Digout_Fito_ Digout_Fito_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAh Event:		Digout_Long2 (pattern)
Bit = 0: Set output to level "low". Bit = 1: Set output to level "high". Bit number 31:10 9 8 1 0 in pattern Output – DIO41 DIO40 DIO33 DIO Notes For any digital channel configured as input, Digout_Long2 will have n conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout_Long1, Digout_Bits1, Digout_Bits2, Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DIO39:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAh Event:		Parameters
in pattern Output - DIO41 DIO40 DIO33 DIO Notes For any digital channel configured as input, Digout_Long2 will have m Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits2 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Digout_Fifo_Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAh		Bit = 0: Set output to level "low".
<pre>Notes For any digital channel configured as input, Digout_Long2 will have n Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits2 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAAh Event:</pre>		
<pre>For any digital channel configured as input, Digout_Long2 will have n Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits2 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:</pre>		Output – DIO41 DIO40 DIO33 DIO32
<pre>For any digital channel configured as input, Digout_Long2 will have n Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA< Event:</pre>		Notes
Conf_DIO configures digital channels DIO41:DIO00 as inputs or ou groups. The channels DIO60:DIO42 are always configured as inputs. See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:		
See also Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits1 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:		Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs ir
Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits2 Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(0011000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:		
Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_ Digout_Fifo_Write Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:		
<pre>Valid for X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:</pre>		Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable
X-A20, X-A20+D, X-A20+DCT Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:		
Example #Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:		
<pre>#Include ADwin-X.Inc Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAA Event:</pre>		
Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAAA Event:		
Conf_DIO(00110000b) Rem bit pattern for odd bits Par_2 = 0AAAAAAAAA Event:		Init:
Rem bit pattern for odd bits Par_2 = 0AAAAAAAAA Event:		
<pre>Par_2 = 0AAAAAAAA Event:</pre>		
Event:		
		-
bigout_Long2(Par_2) 'output bits D1039:32		
		Digout_Long2(Par_2) 'output bits D1039:32

Digout_Bi	Digout_Bits1	
Syntax		
#Includ	de ADwin-X.Inc	
Digout_	_Bits1(set,clear)	
Parameters		
set	Bit pattern to specify outputs, which are set to TTL level LONG High (see table). 1: set to TTL level high. 0: do not change TTL level.	
clear	Bit pattern to specify outputs, which are set to TTL level LONG Low (see table). 1: set to TTL level low. 0: do not change TTL level.	
	Bit number 31 30 1 0 in set/clear	
	Output DIO31 DIO30 DIO01 DIO00	

Notes

For any digital channel configured as input, **Digout_Bits1** will have no effect.

Conf_DIO configures digital channels DIO31:DIO00 as inputs or outputs in groups of 8.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits2, Get_ Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20+DCT

Example

#Include ADwin-X.Inc

Init:

Rem Configure DI015:00 as outputs and DI031:16 as inputs Conf_DI0(0011b) Rem bit pattern for odd bits

 $Par_1 = 55555555h$

Event:

Rem set odd bits to level high, leave even bits unchanged Digout_Bits1(Par_1,0)

Digout_Bits2

Digout_Bits2 sets some of the digital channels DIO41:DIO32 to a defined TTL level.

ADwin

```
Syntax
```

#Include ADwin-X.Inc
Digout Bits2(set,clear)

Parameters

arameters								
set	Higl 1:	battern to s n (see tab set to TTL do not cha	le). . level higl	h.	ch are	set to TT	L level	LONG
clear	Low 1:	battern to s v (see tabl set to TTL do not cha	e). . level low		ch are	set to TTI	L level	LONG
	umber t/clear	31:10	9	8		1	0	
Outp	ut	-	DIO41	DIO40		DIO33	DIO32	

Notes

For any digital channel configured as input, **Digout_Bits2** has no effect.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as inputs.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits1, Get_ Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example #Include ADwin-X I

#Include ADwin-X.Inc

Init:

Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Rem bit pattern for even bits Par_2 = 0AAAAAAA

Event:

Rem set even bits to level high, leave odd bits unchanged Digout_Bits2(Par_1,0)

Get Dig	out_Long1 returns th	ne register	contents	of the	digital out	puts DIO	31:DIO00.	Get_Digout_
Syntax								Long1
#Inc]	Lude ADwin-X.inc							
ret_v	val = Get_Digout	_Long1()						
Paramete							1	
ret_	val Contents (I tion to outp 1: TTL-lev 0: TTL-lev	uts see ta el high.		utput r	egister, d	It alloca-	LONG	
	Bit no. in ret_val	31	30		1	0		
	Kanal	DIO31	DIO30		DIO01	DIO00		
Notes								
	eturn value represents sical output status is t				register or	nly. A rea	d back	
undefi	ny digital channel conf ned value. Conf_DIC puts in groups of 8.							
See also								
	DIO, Digin, Digout, Di Get_Digout_Long2, Vrite							
Valid for								
X-A20	+DCT							
Example #Includ	e ADwin-X.inc							
Conf_D	onfigure channels DO(1111b) sdelay = 10000	5 DIO31:	00 as o	utpui	ts			
Event: Par_1	= Get_Digout_Lor	g1 ()'re	ad back	bit	s 31:0			

Get_Digout_Long2	ABWIII
Get_Digout_	Get_Digout_Long2 returns the register contents of the digital outputs DIO41:DIO32.
Long2	Syntax
	#Include ADwin-X.inc
	ret_val = Get_Digout_Long2()
	Parameters
	ret_val Contents (bit pattern) of the output register, bit allocaLONG tion to outputs see table. 1: TTL-level high. 0: TTL-level low.
	Bit number 31:10 9 8 1 0 in ret_val
	Output – DIO41 DIO40 DIO33 DIO32
	Notes The return value represents the status of the output register only. A read back of physical output status is technically impossible. For any digital channel configured as input, <u>Get_Digout_Long2</u> will return an undefined value. <u>Conf_DIO</u> configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as in- puts.
	See also
	Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits1, Digout_ Bits2, Get_Digout_Long1, Digin_Fifo_Enable, Digout_Fifo_Enable, Digout_ Fifo_Write
	Valid for
	X-A20, X-A20+D, X-A20+DCT
	Example #Include ADwin-X.inc
	<pre>Init: Rem Configure DI039:32 as outputs Conf_DIO(00110000b) Processdelay = 10000</pre>
	<pre>Event: Par_1 = Get_Digout_Long2() 'read back bits DI039:32</pre>

Timer

LONG

LONG

Digin_Fifo_Read_

Digin_Fifo_Read_Timer returns the current status of the 100MHz timer.

Syntax

```
#Include ADwin-X.inc
ret_val = Digin_Fifo_Read_Timer(fifo_no)
Parameters
fifo_no Number (1, 2) of the input FIFO for edge detection.
ret_val Current value (-2<sup>31</sup>-1 ... 2<sup>31</sup>) of the 100MHz timer.
```

Notes

The timer is used to provide time stamps for the edge detection unit, see **Digin_Fifo_Enable**.

The timer value is increased every 10ns by 1, so the timer will reach the original timer value after about 43 seconds (= $10ns \times 2^{32}$). For comparison of time this "overflow" must be considered, so the timer value must be queried regularly in the program before a overflow has happened.

Please note: If the input filter (see **Digin_Filter_Init**) is enabled, the time distance between two time stamps is an integer multiple of 20ns. In other words: there are either only even or only odd time stamps.

The Fifo timers can be reset to zero with Sync_All.

See also

Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Clear, Digin_Fifo_Enable, Digin_Fifo_Full, Digin_Fifo_Read, Digout_Fifo_Read_Timer, Digout_ Fifo_Enable, Digin_Filter_Init, Sync_All

Valid for

X-A20+DCT

Example

#Include ADwin-X.inc
Rem provide number of counter overflows
#Define count_overflow Par_1
Dim t_start, diff_new, diff_old As Long

Init:

count_overflow = 0 'overflow occurs every 43 seconds
t_start = Digin_Fifo_Read_Timer()
diff_old = 0

Event:

Rem Event section must be run at least once every 20 seconds. Rem Else you will miss counter overflows.

```
Rem get timer difference
diff_new = Digin_Fifo_Read_Timer() - t_start
If ((diff_new > 0) And (diff_old < 0)) Then
Inc(count_overflow) 'increase number of counter overflows
EndIf
diff_old = diff_new
```

related examples see

- ADbasic example seconds_timer.bas in folder C:\ADwin\ADbasic\samples_ADwin: seconds_timer.bas

ADwin

<u> </u>							
Digin_Fifo_Clear	Digin_Fifo_Clear clears the FIFO of the edge detection unit.						
	Syntax						
	#Include ADwin-X.inc						
	<pre>Digin_Fifo_Clear(fifo_no)</pre>						
	Parameters						
	fifo_no Number (1, 2) of the input FIFO for edge detection.						
	Notes						
	The input FIFO 1 refers to the digital inputs DIO31:DIO00, the input FIFO 2 re- fers to digital inputs DIO60:DIO32.						
	The input FIFOs can also be cleared with sync_All .						
	See also						
	Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer, Digin_Fifo_ Enable, Digin_Fifo_Full, Digin_Fifo_Read, Digout_Fifo_Clear, Digout_Fifo_En- able, Sync_All						
	Valid for						
	X-A20+DCT						
	Example						
	see Digin_Fifo_Enable						

Digin_Fifo_Enable determines, which input channels the edge detection unit will monitor.	Digin_Fifo_ Enable
Syntax	LIIdDIE
#Include ADwin-X.inc	
Digin_Fifo_Enable (fifo_no,pattern)	

Parameters

fifo_no	Number (1, 2) of the input FIFO for edge detection.	LONG
pattern	Bit pattern to select the input channels to be monitored.	LONG

Notes

The input FIFO 1 refers to the digital inputs DIO31:DIO00, the input FIFO 2 refers to digital inputs DIO60:DIO32.

Bit no. FIFO 1	31	30		2	1	0
DIO input	DIO31	DIO30		DIO02	DIO01	DIO00
Bit no. FIFO 2	31:29	28	27	7	1	0
DIO input	_	DIO60	DIO	59	DIO33	DIO32

Only input channels can be monitored. The channels are programmed as inputs or outputs with Conf DIO.

The edge detection unit checks every 10ns, if an edge has occurred at the selected input channels or if a level has been changed. If an edge has occurred, a pair of values is copied into an internal FIFO array:

- Value 1 contains the level status of all channels as bit pattern.
- Value 2 contains a time stamp, which is the current value of a 100MHz timer.

The FIFO array may contain 511 value pairs (level status and time stamp) in maximum. If and as long as the FIFO array is filled completely, any additional value pair cannot be saved and will thus be lost.

See also

Conf_DIO, Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer, Digin_Fifo_Clear, Digin_Fifo_Full, Digin_Fifo_Read, Digout_Fifo_Enable

Valid for

X-A20+DCT

Example

```
#Include ADwin-X.inc
```

```
Dim Data_1[10000], Data_2[10000] As Long
Dim i, num, index As Long
```

Init:

```
Conf DIO(1100b)
                        'channels 15:0 as inputs
Digin_Fifo_Enable(1,0) 'edge control off
Digin_Fifo_Clear(1)
                        'clear FIFO 1
Digin Fifo Enable(1,101010b) 'control channels 1,3,5
index = 1
```

Event:

```
num = Digin Fifo Full(1) 'get number of value pairs
If (num > 0) Then
 If (index + num > 10000) Then index = 1
 Rem read value pairs
 For i = 1 To num
  Digin Fifo Read(1, Data 1[index], Data 2[index])
  index = index + 1
 Next i
EndIf
```


Digin_Fifo_Full	Digin_Fifo_Full returns the number of saved value pairs in the FIFO of the edge detection unit.						
	Syntax						
	#Include ADwin-X.inc						
	<pre>ret_val = Digin_Fifo_Full(fifo_no)</pre>						
	Parameters						
	fifo_no Number (1, 2) of the input FIFO for edge detection. LONG						
	ret_val Number (0511) of saved value pairs in the FIFO. LONG						
	Notes						
	The FIFO array may contain 511 value pairs (level status and time stamp) in maximum. If and as long as the FIFO array is filled completely, any additional value pair cannot be saved and will thus be lost.						
	See also						
	Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer, Digin_Fifo_ Clear, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_ Empty						
	Valid for						
	X-A20+DCT						
	Example						
	see Digin_Fifo_Enable						

Digin_Fifo_Read reads one value pair from the FIFO of the edge detection unit and returns them in 2 variables.

Digin_Fifo_Read

Syntax

#Include ADwin-X.inc

Parameters

fifo_no	Number (1, 2) of the input FIFO for edge detection.	LONG
value_by_	Variable where the level status bit patterns are written.	LONG
ref	Each level status bit corresponds to a digital input (see table below).	CONST
	Variable where time stamps are written.	LONG
by_ref		CONST

Notes

The input FIFO 1 refers to the digital inputs DIO31:DIO00, the input FIFO 2 refers to digital inputs DIO60:DIO32.

Bit no. FIFO 1	31	30		2	1	0
DIO input	DIO31	DIO30		DIO02	DIO01	DIO00
Bit no. FIFO 2	31:29	28	27		1	0
DIO input	-	DIO60	DIO	59	DIO33	DIO32

Before reading you have to confirm with **Digin_Fifo_Full**, that there is at least one value pair saved in the FIFO.

The passed parameters must be variables (or array elements), not constants.

The time difference between 2 level status patterns is the difference of the appropriate time stamps, measured in units of 10ns:

 $\Delta t = 10 \text{ ns} \cdot (\text{stamp}_1 - \text{stamp}_2)$

See also

Conf_DIO, Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer, Digin_Fifo_Clear, Digin_Fifo_Enable, Digin_Fifo_Full, Digout_Fifo_Enable

Valid for

X-A20+DCT

Example

#Include ADwin-X.inc

```
Dim Data_1[10000], Data_2[10000] As Long
Dim index As Long
```

Init:

```
Conf_DIO(1100b) 'channels 15:0 as inputs
Digin_Fifo_Enable(1,0) 'edge control off
Digin_Fifo_Clear(1) 'clear FIFO
Digin_Fifo_Enable(1,10011b) 'control channels 0,1,4
index = 1
```

```
Event:
If (Digin_Fifo_Full(1) > 0) Then
    Rem read one value pair
    Digin_Fifo_Read(1,Data_1[index], Data_2[index])
    index = index + 1
    If (index > 10000) Then index = 1
EndIf
```


Digout_Fifo_	Digout_Fifo_Read_Timer returns the current value of a 100MHz counter.					
Read_Timer	Syntax					
itedu_filliei	#Include ADwin-X.inc					
	ret_val = Digout_Fifo_Read_Timer (fifo_no)					
	Parameters					
	fifo_no Number (1, 2) of the output FIFO. LONG					
	ret_val Current value (- 2^{31} -1 2^{31}) of the counter. LONG					
	Notes					
	The counter is used for exact edge output timing at predefined points of time, see Digout_Fifo_Write .					
	The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2 refers to digital outputs DIO60:DIO32.					
	The counter value can only be used in the FIFO operation mode with absolute time values i.e. parameter mode = 1 in Digout_Fifo_Mode .					
	The timer value is increased by 1 every 10ns, so the timer will reach the original					
	timer value after about 43 seconds (=10 ns $\times 2^{32}$) ticks. For time comparison you have to consider this "overflow", thus the counter value must be queried regularly before an overflow happens.					
	The counter is set to zero with Digout Fifo Clear .					
	See also					
	Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Read_Timer, Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_ Mode, Digout_Fifo_Start, Digout_Fifo_Write					
	Valid for					
	X-A20+DCT					
	Example #Include ADwin-X.inc Rem provide number of counter overflows #Define count_overflow Par_1 Dim t_start, diff_new, diff_old As Long					
	<pre>Init: count_overflow = 0</pre>					
	Event: Rem Event section must be run at least once every 20 seconds. Rem Else you will miss counter overflows.					
	<pre>Rem get timer difference diff_new = Digout_Fifo_Read_Timer() - t_start If ((diff_new > 0) And (diff_old < 0)) Then Inc(count_overflow) 'increase number of counter overflow EndIf diff_old = diff_new</pre>					
	<pre>other examples see</pre>					

Digout_Fifo_Clear stops the edge output and clears the edge output FIFO.	Digout_Fifo_Clear
Syntax	
#Include ADwin-X.inc	
<pre>Digout_Fifo_Clear(fifo_no)</pre>	
Parameters	
fifo_no Number (1, 2) of the output FIFO for edge output.	
Notes	
Before first use, the FIFO must be cleared. Then, the FIFO can be filled with data using Digout_Fifo_Write .	
If the edge output has been stopped with Digout_Fifo_Clear , it can only be started with Digout_Fifo_Start again.	
The output FIFOs can also be cleared with Sync_All .	
See also	
Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Clear, Digout_Fifo_ Read_Timer, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_Mode, Digout_Fifo_Start, Digout_Fifo_Write, Sync_All	
Valid for	
X-A20+DCT	
Example	
see Digout_Fifo_Mode	

Digout_Fifo_ Enable	Digout_Fifo_Enable sets the output channels where edges are output. Syntax
	#Include ADwin-X.inc
	Digout Fifo_Enable (fifo_no,pattern)
	Parameters
	fifo_no Number (1, 2) of the output FIFO for edge output.
	pattern Bit pattern to select the output channels for edge output. LONG
	Notes
	The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2 refers to digital outputs DIO60:DIO32.
	Bit no. FIFO 1 31 30 2 1 0
	DIO output DIO31 DIO30 DIO02 DIO01 DIO00
	Bit no. FIFO 2 31:29 28 27 1 0
	DIO output – DIO60 DIO59 DIO33 DIO32
	Edges can only be output to output channels. The specified channels must be first programmed as outputs using Conf_DIO.
	Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in groups. The channels DIO60:DIO42 are always configured as inputs.
	Digout_Fifo_Enable selects channels for edge output via output FIFO. The levels of the other output channels-and only of these-can be set with instructions like Digout Long .
	The levels and points of time of egde output are set with Digout_Fifo_Write .
	See also
	Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Enable, Digout_Fifo_Read_Timer, Digout_Fifo_Clear, Digout_Fifo_Empty, Digout_ Fifo_Mode, Digout_Fifo_Start, Digout_Fifo_Write
	Valid for
	X-A20+DCT
	Example #Include ADwin-X.inc Dim Data_1[10000], Data_2[10000] As Long
	<pre>Init: Conf_DIO(1111b) 'channels 0:31 as outputs Digout_Fifo_Clear(1) 'clear FIFO Digout_Fifo_Enable(1,101010b)'edge output on channels 1,3,5 Rem write 3 value pairs into output FIFO and start output Rem 100ns: channels 1,3,5 Rem 300ns: channels 1,3 Rem 500ns: channels 3,5 Digout_Fifo_Write(1,101010b,10) Digout_Fifo_Write(1,001010b,30) Digout_Fifo_Write(1,101000b,50) Digout_Fifo_Start(1) 'clear FIFO</pre>
	<pre>Event: Rem write new value pairs into FIFO, if possible If (Digout_Fifo_Empty(1) > 1) Then Digout_Fifo_Write(1,100000b,1) EndIf If (Digout_Fifo_Empty(1) > 20) Then Digout_Fifo_Write(1,101010b,10) Digout_Fifo_Write(1,001010b,30) Digout_Fifo_Write(1,101000b,50) EndIf</pre>

Digout Fifo Empty returns the number of free value pairs in the edge output FIFO.	Digout_Fifo_
Syntax	Empty
#Include ADwin-X.inc	p.cy
ret_value = Digout_Fifo_Empty (fifo_no)	
Parameters	
fifo_no Number (1, 2) of the output FIFO for edge output.	
ret_value Number (0511) of free value pairs in the FIFO.	
Notes	
The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2 refers to digital outputs DIO41:DIO32.	
The FIFO may contain 511 value pairs (level status and time stamp) in maxi- mum.	
See also	
Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Full, Digout_Fifo_Read_ Timer, Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Mode, Digout_ Fifo_Start, Digout_Fifo_Write	
Valid for	
X-A20+DCT	
Evenne	

Example

see Digout_Fifo_Mode

Digout_Fifo_	Digout_Fifo_M	tode sets the FIFO operation mode of the edge output.	
Mode	Syntax		
mode	#Include A	Dwin-X.inc	
	Digout_Fif	<pre>o_Mode(fifo_no,mode)</pre>	
	Parameters		
	fifo_no	Number (1, 2) of the output FIFO for edge output.	LONG
	mode	 Operation mode of the FIFO edge output: 1: Output FIFO with edge output, time values with absolute reference. 3: Output FIFO with edge output, time values with rel- 	LONG
	Notes	ative reference.	
	The output FI	FO 1 refers to the digital outputs DIO31:DIO00, the output al outputs DIO41:DIO32.	FIFO 2
	Time stamps	of an output FIFO set the time when an edge is output o_Write). The time stamp value can be defined with abso	
	counte Using t	nce: Ite value: The time stamp refers to the starting time 0 of the r (Digout_Fifo_Start). this mode, the current counter value can be read with Digor Timer.	
		ve value: The time stamp is counted relative to the previous	s time
	The list of valu FIFO.	ue pairs can be filled up-as long as there are any value pair	s in the
	See also		
		gin, Digout, Digout_Bits1, Digout_Bits2, Digout_Fifo_Rea io_Clear, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout Fifo_Write	
	Valid for	_	
	X-A20+DCT		
	Example #Include ADwi Dim value[4]		
	Init:		
	Processdelayvalue[1] = (value[2] = !	01b 'output value n	ative)
	<pre>value[3] = 1 value[4] = 1 Conf DIO(011</pre>	7000 ' with output time 70 µs (rel	ative)
	Digout_Fifo Digout_Fifo	-	
	Rem write 2 Digout_Fifo	<pre>value pairs into output FIFO and start out Write(1,value[1],value[2]) Write(1,value[3],value[4])</pre>	put
	If (Digout_I Digout_Fif	<pre>ew value pairs into FIFO, if possible Fifo_Empty(1) >= 2) Then o_Write(1,value[1],value[2])</pre>	
	Digout_Fif EndIf	<pre>o_Write(1,value[3],value[4])</pre>	

LONG

Digout_Fifo_Start

Digout_Fifo_Start starts the edge output on selected output FIFOs.

Syntax

#Include ADwin-X.inc

Digout Fifo Start (fifo pattern)

Parameters

fifo_	
pattern	

Bit pattern to access the FIFOs: Bit = 0: Ignore FIFO. Bit = 1: Start edge output on the FIFO.

Bits in fifo_pattern	31:2	1	0
FIFO number	-	2	1

Notes

After start of the edge output, the counter starts to count with 0. The counter is used to do exact output timing, see Digout_Fifo_Write.

The timer value is increased by 1 every 10ns, so the timer will reach the original timer value after about 43 seconds (=10 ns \times 2³²) ticks. For time comparison you have to consider this "overflow", thus the counter value must be queried regularly before an overflow happens. The counter runs at a clock rate of 100MHz.

You can also start the edge output with Sync All.

See also

Digin, Digout_Bits1, Digout_Bits2, Digout_Fifo_Read_Timer, Digout_ Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_Mode, Digout_Fifo_Write, Sync_All

Valid for

X-A20+DCT

Example

see Digout Fifo Mode

Digout_Fifo_Write	Digout_Fifo_W	rite writes one value pair into the output edge FIFO.	
•	Syntax		
	#Include AD	Wwin-X.inc	
	Digout_Fifc	_Write(fifo_no, level_pattern, timestamp)	
	Parameters		
	fifo_no	Number (1, 2) of the output FIFO for edge output.	LONG
	level_ pattern	Bit pattern of level status to be output. Bit=0: TTL level low. Bit=1: TTL level high.	LONG
		Each bit corresponds to a digital output (see table).	
	timestamp	Time stamp (in steps of 10ns) referring to <u>level</u> <u>pattern</u> , which sets the time of output.	LONG

Notes

The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2 refers to digital outputs DIO41:DIO32.

Bit no. FIFO 1	31	30		2	1	0
DIO output	DIO31	DIO30		DIO02	DIO01	DIO00
Bit no. FIFO 2	31:10	9	8		1	0

You must not write more value pairs into the FIFO than are free. The number of free values in the FIFO is returned with **Digout_Fifo_Empty**.

The FIFO array may contain 511 value pairs (level status and time stamp) in maximum. If and as long as the FIFO array is filled completely, no more value pair can be written into.

The time stamp can be given with absolute or relative reference, see **Dig_Fifo_Mode**. The difference between two output times must be at least 20ns. The value of a time stamp is counted in processor clocks i.e. in units of 10ns.

The edge output runs like follows:

- The 100MHz counter is increased by 1 every 10ns.
- If the counter value equals the time stamp of the current value pair in the FIFO, the bit pattern is output to the specified output channels.
- If a bit pattern has been output, the value pair is deleted from the FIFO.
- The value pairs are processed in the order as they were written into the FIFO.

Therefore:

A time stamp defines the exact output time, and in time units of 10ns. The value can be given in two ways:

• As absolute value in relation to the starting time of the 100MHz counter using Digout_Fifo_Start.

A time stamp of 152 would have the appropriate bit pattern be output exactly at 1.52 μs after the 100MHz counter has started.

 As relative value, which is relative to the previous time stamp. A time stamp of, 152 would have the appropriate bit pattern be output exactly at 1.52 µs after the previous pattern was output.

Time stamps must be stored in ascending order.

The FIFO must be filled with data early enough, so that the next output time is located in the future. But if the FIFO runs empty anyway, please note:

- With absolute values, the time stamp must be greater than the current timer value. Otherweise the edge output is "missed" and executed only after the timer has run once around. (about 43 seconds).
- With relative values, the time stamp must be greater than the time period since the previous pattern output (when the FIFO ran empty). If this fails, the bit pattern is output immediately (but obviously with delay); the next time stamp will then be relative to the delayed output time.

See also

Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Enable, Digout_Fifo_Read_Timer, Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_ Fifo_Empty, Digout_Fifo_Mode, Digout_Fifo_Start

Valid for

X-A20+DCT

Example

see Digout_Fifo_Mode

16.4 Counter

Dieser Abschnitt beschreibt folgende Befehle:

- Cnt_Clear (page 111)
- Cnt_Enable (page 112)
- Cnt_PW_Enable (page 113)
- Cnt_Get_Status (page 114)
- Cnt_Latch (page 116)
- Cnt_Mode (page 117)
- Cnt_Read (page 119)
- Cnt_PW_Latch (page 120)
- Cnt_Read_Int_Register (page 121)
- Cnt_Get_PW (page 122)
- Cnt_Get_PW_HL (page 123)
- Cnt_Read_Latch (page 124)
- Cnt_Sync_Latch (page 125)
- SSI_Mode (page 128)
- SSI_Read (page 129)
- SSI_Set_Bits (page 130)
- SSI_Set_Clock (page 131)
- SSI_Start (page 133)
- SSI_Status (page 134)

Cnt Clear sets one or more up/down counters to zero, according to a bit pat-Cnt_Clear tern. Syntax **#Include** ADwin-X.inc Cnt_Clear (pattern) **Parameters** Bit pattern to select counters. LONG pattern Bit = 0: no influence. Bit = 1: set counter to zero. Bit no. 31:7 6 5 4 3 2 1 0 Counter no. 7 6 5 4 3 2 1 _ Notes After Cnt Clear has been executed the bit pattern is automatically reset to 0 (zero), so the counters start counting from 0. Please pay attention to set Cnt_Mode parameter pattern to bit 1=0 for the appropriate counters. Else, with bit 1=1, the counter inputs A, B have also to be set to TTL level high, in order to clear the counter. With Sync_All, you can set all 7 counters (and all 7 PWM counters) to zero at the same time. See also Cnt_Enable, Cnt_Get_Status, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_Read_ Int_Register, Cnt_Read_Latch, Cnt_Sync_Latch, Sync_All Valid for X-A20+D, X-A20+DCT, X-A20+CO1 Example **#Include** ADwin-X.inc Init: Cnt_Enable(0) 'stop all counters Cnt Mode (2,0b) 'Counter 2 clock/direction Cnt Mode (3,0b) 'Counter 3 clock/direction Cnt_Clear(110b) 'reset counters 2+3 to 0 Cnt Enable (110b) 'start counters 2+3 Event: Cnt Latch(110b) 'latch counters 2+3 **Par 1** = **Cnt Read Latch**(2) 'read latch counter 2 and ... Par_2 = Cnt_Read_Latch(3) 'latch counter 3

Cnt_Enable

Cnt_Enable disables or enables the up/down counters set by pattern, to count incoming impulses.

Syntax

#Include ADwin-X.inc

Cnt	Enable (pattern)	
Cnt	Enable (pattern)	

Parameters

pattern	

Bit pattern.
Bit = 0: stop counter.
Bit = 1: enable counter.

LONG

Bit no.	31:7	6	5	4	3	2	1	0
Counter no.	_	7	6	5	4	3	2	1

Notes

PWM counters are enabled or disabled with Cnt_PW_Enable.

With counters 1, 2, and 3, you must set the inputs as digital inputs with Conf_ DIO to make the counters work.

See also

Cnt_Clear, Cnt_Get_Status, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_Read_Int_ Register, Cnt_Read_Latch, Cnt_Sync_Latch, Cnt_Sync_Latch, Conf_DIO

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example

#Include ADwin-X.inc

Init:	
Cnt_Enable(0)	'stop all counters
Cnt_Mode(1,0b)	'counter 1 mode clock-direction
Cnt_Mode(2,0b)	'counter 1 mode clock-direction
Cnt_Clear (11b)	'reset counters 1+2 to 0
Cnt_Enable(11b)	'start counters 1+2

Event:

Cnt_Latch(11b)	'latch counters 1+2
$Par_1 = Cnt_Read_Latch(1)$	'read counter latch 1
<pre>Par_2 = Cnt_Read_Latch(2)</pre>	'read counter latch 2

Cnt_PW_Enable Cnt_PW_Enable enables or disables the PWM counters selected by pattern. Syntax **#Include** ADwin-X.Inc Cnt PW Enable (pattern) Parameters Bit pattern LONG pattern Bit = 0: Disable counter. Bit = 1: Enable counter. Bit no. 31:7 5 3 4 2 1 0 6 Counter no. 1 7 6 5 4 3 2 _ Notes Up/down counters are started or stopped with Cnt_Enable. The PWM counter input is set with Cnt Mode. See also Cnt Clear, Cnt Get Status, Cnt Mode, Cnt PW Latch, Cnt Read Int Register, Cnt_Get_PW, Cnt_Get_PW_HL, Cnt_Sync_Latch Valid for X-A20+D, X-A20+DCT, X-A20+CO1 Example **#Include** ADwin_X.inc Init: Cnt_PW_Enable(0) 'stop all PW counters Rem counters 1+2: mode clock/dir, PWM at input CLK Cnt Mode(2,0) 'counter 2: mode clock/dir, PWM input CLK Cnt_PW_Enable(11b) 'start PWM counters 1+2 Event: Cnt PW Latch(11b) 'latch PWM counters 1+2 Cnt Get PW HL(1, Par 1, Par 2) 'read high/low time Cnt_Get_PW(1,FPar_1,FPar_2) 'read frequency and duty cycle

nt_Get_Status										
nt_Get_Status		atus returns	s the status reg	gister of	one	coun	ter b	lock.		
	Syntax									
	#Include	ADwin-X.	inc							
	ret_val	<pre>= Cnt_Get</pre>	_Status (cour	ter_no)						
	Parameters									
	counter	_	er block number							LON
	ret_val	Conte source	nts of status re s.	gister: H	ints f	or po	otenti	al er	ror	LON
		Meani	ng of bits 04 s	ee table.						
	Bit n) .		31:5	4	3	2	1	0	
	Sign	al		_	С	L	Ν	В	Α	
	N: C L: Lir C: C		nput (static) e not connectec or (signals A and					/ are	not	
	Notes									
	A line erro bits are al		y be detected at	differenti	al inp	outs! F	or T	TL-in	outs th	nese
	The status	register is a	utomatically res	et by reac	ling.					
	See also									
	Cnt_Enab	e, Cnt_Get_	PW, Cnt_Mode,	Cnt_Rea	d					
	Valid for									
	X-A20+D,	X-A20+DCT,	X-A20+CO1							

Example

```
#Include ADwin-X.inc
Dim error As Long
Init:
                        'stop counter
'counter 1: mode clock/dir
'reset counter 1 to 0
 Cnt Enable(0)
 Cnt Mode (1,0)
 Cnt Clear(1b)
 Cnt_Enable(1b)
                             'start counter 1
                             'reset error flag
 error = 0
Event:
 PAR_1 = Cnt_Read(1)
                           'read counter 1
 PAR_2 = Cnt_GetStatus(1) And 11111b 'Status
 REM line or cable error at counter 1?
 If (PAR 2 AND 01000b = 01000b) Then
  REM number of line/cable errors
  Inc PAR 3
  error = 1
                             'set error flag
 EndIf
 REM correlation error at counter 1?
 If (PAR_2 And 10000b = 10000b) Then
  Inc PAR 4
                            'number correlation errors
                             'set error flag
  error = 1
 EndIf
 REM status input CLR
 PAR_5 = Shift_Right(PAR_2 And 100b, 2)
 REM status input A
 PAR_6 = Shift_Right(PAR_2 And 10b, 1)
 REM status input B
 PAR_7 = PAR_2 And 1b
```


Cnt_Latch	Cnt_Latch tran ters into the rel								/down c
	Syntax		,	p 011 011	.9 0.1 1		940002		
	#Include ADwin-X.inc								
	Cnt Latch	pattern)							
	Parameters	-							
	pattern							LON	
	Bit no.	31:6	6	5	4	3	2	1	0
	Counter n	10. –	7	6	5	4	3	2	1
	The latch is re For PWM cou synchronousl See also Cnt_Clear, C Read, Cnt_R	inters use Cn y, use Cnt_s Cnt_Enable,	t_PW_ Sync_I Cnt_G	Latch. Latch. et_Stat	In orde	er to lato	ch sevei	ral cour	nter value
	Valid for X-A20+D, X-/	420+DCT, X-	A20+C	:01					
	Example	Duin V in	a						
	Example #Include A Init: Cnt_Enabl Cnt_Mode Cnt_Mode Cnt_Clear Cnt_Enabl	Le(0) (1,0b) (2,0b) r(11b)	с		'count 'count 'reset	ter 1 ter 2 t cour	counte clock clock ters nters	/dired /dired 1+2 to	ction

-	es the operating mode of one counter block.		Cnt_Mode
tax	Nuclear Marchane		
Include AI			
—	nt_no,pattern)		
meters cnt no	Counter block number: 17.	LONG	
—		LONG	
pattern	Bit pattern to set the operating mode of a counter.	LONG	
Bit no.	Meaning		
Bit 0	Up/down counter mode: Bit = 0: mode clock/direction. Bit = 1: mode A-B.		
Bit 1	Clear mode. Signal condition, which clears the up/dow counter: Bit = 0: TTL level high at input CLR. Bit = 1: TTL level high at all inputs A, B, CLR. Available i mode A-B only.		
Bit 2	Invert input A / CLK in mode clock/direction: Bit = 0: Input is not inverted. Bit = 1: Input is inverted.		
Bit 3	Invert input B / DIR in mode clock/direction: Bit = 0: Input is not inverted. Bit = 1: Input is inverted.		
Bit 4	Set use of input CLR / LTC. Bit = 0: CLR input: clear counter. Bit = 1: LTC input: latch counter.		
Bit 5	Enable input CLR / LTC. Bit = 0: Input CLR / LTC is disabled. Bit = 1: Input CLR / LTC is enabled.		
Bit 6	Select edge for PWM counter. Bit = 0: rising edge. Bit = 1: falling edge.		
Bits 7,8	Select input for PWM counter. 00b: Input A / CLK 01b: Input B / DIR 10b: Input CLR / LTC		
Bits 31:9	reserved		

Notes

Please use Cnt_Mode only when the counter is disabled, see Cnt_Enable and Cnt_PW_Enable.

With counters 1, 2, and 3, you must set the inputs as digital inputs with Conf_ DIO to make the counters work.

With standard clear mode (bit 1=0), the counter value is reset to zero as long as TTL level high is given at the input. In order to clear the counter, the input $_{\rm CLR}$ must be enabled with bit 5=1.

If you want to clear a counter with Cnt_Clear set pattern bit 1=0. Else, with bit 1=1, the counter inputs A, B have also to be set to TTL level high, in order to clear the counter.

Plaese note: You can suppress spikes of incoming signals with Digin_ Filter_Init.

See also

Cnt_Clear, Cnt_Enable, Cnt_Get_Status, Digin_Filter_Init, Conf_DIO

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example	
#Include ADwin-X.inc	
<pre>Init: Cnt_Enable(0) Cnt_Mode(1,0b) Cnt_Mode(2,0b) Cnt_Clear(11b) Cnt_Enable(11b)</pre>	'stop all counters 'counter 1 clock/directio 'counter 2 clock/directio 'reset counters 1+2 to 0 'start counters 1+2
Event: Cnt_Latch(11b) Par_1 = Cnt_Read_Latch(1) Par_2 = Cnt_Read_Latch(2)	'latch counters 1+2

Cnt_Read transfers a current up/de value.	own counter value into L	atch A and returns the	Cnt_Read
Syntax			
#Include ADwin-X.inc			
ret_val = Cnt_Read (counter	er_no)		
Parameters			
counter_no Up/down counte	r number: 17.	LONG	
ret_val Counter value.		LONG	
Notes			
Use the return value in calculation ferences or count direction).	s only with variables of the	e type Long (e.g. dif-	
See also			
Cnt_Clear, Cnt_Enable, Cnt_Ge Latch, Cnt_Sync_Latch	t_Status, Cnt_Latch, Cnt	_Mode, Cnt_Read_	
Valid for			
X-A20+D, X-A20+DCT, X-A20+C	O1		
Example #Include ADwin-X.inc			
Init:			
Cnt_Enable(0)	'stop all coun		
Rem Counter 1: Mode clo Cnt_Mode(1,100000b)	ck/direction, enabl	le CLR	
Rem Counter 2: Mode clo Cnt Mode(2,110000b)	ck/direction, enabl	e LATCH	
Cnt_Clear (11b)	'reset counter		
Cnt_Enable(11b)	'start counter	s 1+2	
Event:			
<pre>Par_1 = Cnt_Read(1) 'rea</pre>			
<pre>Par_2 = Cnt_Read(2) 'rea</pre>	d counter 2		

nt_PW_Latch	Cnt_PW_Latch copies the value of one or more PWM counters into a buffer.
	Syntax
	#Include ADwin-X.inc
	Cnt_PW_Latch(pattern)
	Parameters
	pattern Bit pattern. LONG
	Bit = 0: no function. Bit = 1: transfer PWM counter value into a buffer.
	Bit no. 31:6 6 5 4 3 2 1 0
	Counter no. – 7 6 5 4 3 2 1
	Notes
	The buffer is to be read with Cnt_Get_PW or Cnt_Get_PW_HL.
	See also
	Cnt_Clear, Cnt_PW_Enable, Cnt_Get_Status, Cnt_Mode, Cnt_Read_Int_Regi-
	ster, Cnt_Get_PW, Cnt_Get_PW_HL, Cnt_Sync_Latch
	Valid for
	X-A20+D, X-A20+DCT, X-A20+CO1
	Example
	#Include ADwin-X.inc
	Init:
	Cnt_PW_Enable(0) 'stop all counters
	Rem Counters 1+2: mode clock/dir, PWM input CLK
	Cnt_Mode (1,0) Cnt_Mode (2,0)
	Cnt_PW_Enable(11b) 'start PWM counters 1+2
	Event: Cnt PW Latch(11b) 'latch counters 1+2
	REM read high/low time
	Cnt_Get_PW_HL(1, Par_1, Par_2)
	REM read frequency/duty cycle Cnt Get_PW(1,FPar_1,FPar_2)

Cnt_Read_Int_

Register

Cnt_Read_Int_Register returns the content of a counter register.

Syntax

#Include ADwin-X.inc

```
ret_val = Cnt_Read_Int_Register(counter_no, reg_no)
```

Parameters

counter_no	Counter block number: 17.	LONG
reg_no	Key number (015) for a counter register, see below.	LONG
ret val	Content of the counter register.	LONG

reg_no	Register
0	Latch 1 for positive edges.
1	Latch 2 for positive edges.
2	Latch 3 for positive edges.
3	Latch 1 for negative edges.
4	Latch 2 for negative edges.
5	Latch 3 for negative edges.
6	Software latch for VR counter.
7	Software latch for PWM counter.
8	Shadow register for Latch 1, positive edges.
9	Shadow register for Latch 2, positive edges.
10	Shadow register for Latch 3, positive edges.
11	Shadow register for Latch 1, negative edges.
12	Shadow register for Latch 2, negative edges.
13	Shadow register for Latch 3, negative edges.
14	Shadow register for software latch, VR counter.
15	Counter status.

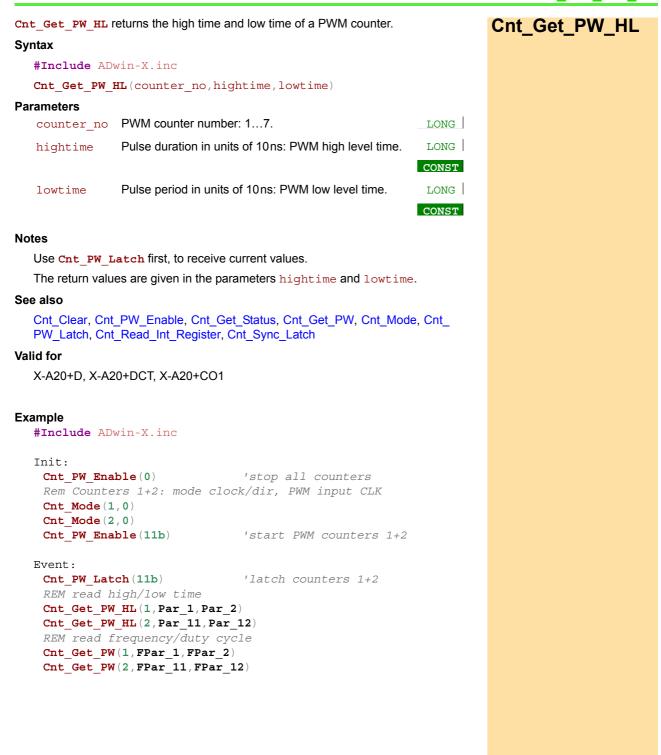
Notes

The registers above are assigned to each PWM counter. If PWM counters are evaluated with standard instructions Cnt_Get_PW and Cnt_Get_PW_HL, no further knowledge is required about PWM registers. Use the evaluation with PWM registers for special solutions only.

Register contents are set with Cnt_PW_Latch or Cnt_Sync_Latch.

See also

Cnt_Get_PW, Cnt_Get_PW_HL, Cnt_PW_Latch, Cnt_Sync_Latch


Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example

see Cnt_Sync_Latch

Cnt_Get_PW	Cnt_Get_PW returns frequency and duty cycle of a PWM counter.						
	Syntax						
	#Include ADwin-X.inc						
	<pre>Cnt_Get_PW(pwm_no,frequency,dutycycle)</pre>						
	Parameters						
	pwm_no PWM counter number: 17. LONG						
	frequency Frequency in Hertz: 0,023 Hz20 MHz. FLOAT CONST CONST						
	dutycycle Duty cycle in percent: 0.0100.0. FLOAT CONST CONST						
	Notes						
	Use Cnt_PW_Latch first, to receive current values.						
	The return values are given in the parameters frequency and dutycycle.						
	See also						
	Cnt_Clear, Cnt_PW_Enable, Cnt_Get_Status, Cnt_Get_PW_HL, Cnt_Mode, Cnt_PW_Latch, Cnt_Read_Int_Register, Cnt_Sync_Latch						
	Valid for						
	X-A20+D, X-A20+DCT, X-A20+CO1						
	Example #Include ADwin-X.inc						
	<pre>Init: Cnt_PW_Enable(0)</pre>						
	Cnt_PW_Enable(11b) 'start PWM counters 1+2						
	Event: Cnt_PW_Latch(11b) 'latch counters 1+2 REM read high/low time Cnt_Get_PW_HL(1,Par_1,Par_2) Cnt_Get_PW_HL(2,Par_11,Par_12) REM read frequency/duty cycle Cnt_Get_PW(1,FPar_1,FPar_2) Cnt_Get_PW(2,FPar_11,FPar_12)						

Cnt_Read_Latch	Cnt_Read_Latch returns the va	alue of a up/down counter's latch.			
	Syntax				
	#Include ADwin-X.inc				
	ret_val = Cnt_Read_Lat	tch(counter_no)			
	Parameters				
	counter_no Counter nun		LONG		
	ret_val Content of c	ounter latch.	LONG		
	Notes				
	Use the return value in calcula ferences or count direction).	Use the return value in calculations only with variables of the type Long (e.g. dif- ferences or count direction). See also			
	See also				
	Cnt_Clear, Cnt_Enable, Cnt Cnt_Sync_Latch	_Get_Status, Cnt_Latch, Cnt_Mod	e, Cnt_Read,		
	Valid for				
	X-A20+D, X-A20+DCT, X-A2	0+CO1			
	Example #Include ADwin-X.inc				
	Init:				
	Cnt_Enable(0)	'stop all counters			
		dir, enable latch input			
	Cnt_Mode(2,110000b) Cnt_Clear(10b)	'reset counter 2 to	D 0		
	Cnt_Enable(10b)	'start counter 2			
	Event:				
		<pre>tch(2) 'read counter latch</pre>	2		

Cnt Sync Latch copies the contents of the selected up/down counters and PWM Cnt_Sync_Latch counters into buffers. **Syntax #Include** ADwin-X.inc Cnt_Sync_Latch (pattern) **Parameters** Bit pattern LONG pattern Bit = 0: No function. Bit = 1: Copy counter content into a buffer. Bit no. 31:6 5 4 3 2 1 0 6 Counter no. 7 6 5 4 3 2 1 _ Notes Each bit is assigned to both an up/down counter and a PWM counter. For each set bit, both counter contents are copied simultaneously. The instruction therefore has the same function as Cnt_Latch and Cnt_PW_Latch together. The buffers can be read e.g. with Cnt_Read_Latch or Cnt_Get_PW. With Sync_All, you can latch all 7 counters and 7 PWM counters at the same time. See also Cnt Get PW, Cnt Latch, Cnt Mode, Cnt PW Latch, Cnt Read Int Register, Cnt_Read_Latch, Sync_All Valid for X-A20+D, X-A20+DCT, X-A20+CO1 Example **#Include** ADwin-X.inc **#Define** frequency **PAR 1** Dim time, edges As Long Dim pw, oldpw As Long Dim vr, oldvr As Long Init: Processdelay = 3000000 '200Hz with T12 processor Cnt Enable(0) 'counters off Cnt PW Enable(0) 'PWM counters off Cnt Mode (1,0000000b) 'mode: clock/dir Cnt Clear(0001b) 'clear counter 1 Cnt Enable(1b) 'enable V/R 1 'enable PWM 1 Cnt PW Enable(1b) Cnt Sync Latch(0001b) 'latch counter 1 (V/R + PWM) oldvr = Cnt Read Int Register (1,6) 'V/R counter 1 oldpw = Cnt_Read_Int_Register(1,8) 'PWM counter 1 frequency = 0Event: 'latch counter 1 (V/R + PWM) Cnt Sync Latch(0001b) vr = Cnt Read Int Register (1,6) 'V/R counter 1 edges = Abs(vr - oldvr) 'number of edges between events If (edges <> 0) Then Rem get positive edges latch 1 pw = Cnt_Read_Int_Register(1,8) time = pw - oldpw 'calculate time base Rem frequency: 10000000=timer frequency of CNT module frequency = edges * 100000000 / time oldvr = vr 'store VR counter value oldpw = pw 'store PW counter value

EndIf

16.5 SSI interface

This section describes instructions to access SSI decoders:

- SSI_Mode (page 128)
- SSI_Read (page 129)
- SSI_Set_Bits (page 130)
- SSI_Set_Clock (page 131)
- SSI_Set_Delay (page 132)
- SSI_Start (page 133)
- SSI_Status (page 134)

SSI_Mode	SSI_Mode sets the operation mode of the SSI decoder, either "single shot (read out once) or "continuous" (read out continuously).
	Syntax
	#Include ADwin-X.inc
	SSI_Mode (pattern)
	Parameters
	pattern Operation mode of the SSI decoder. LONG 0: "Single shot" mode, the encoder is read out once. 1: 1: "Continuous" mode, the encoder is read out continuously.
	Notes
	If you select the mode "continuous", reading the encoder is started immediately. SSI_Start is not necessary for this. With SSI_Set_Delay you set the time di- stance between reading two consecutive encoder values.
	Using the "continuous" mode, some encoder types occasionally return the wrong counter value 0 (zero) instead of the corrct counter value. This error does not occur with the "single shot" mode.
	Plaese note: You can suppress spikes of incoming signals with <pre>Digin_</pre> <pre>Filter_Init.</pre>
	See also
	SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_Start, SSI_Sta- tus, Digin_Filter_Init
	Valid for
	X-A20+D, X-A20+DCT
	Example #Include ADwin-X.inc
	Init:
	SSI_Set_Clock(200)'clock rate = 125 kHzSSI Set Bits(1,23)'number of bits = 23
	SSI_Set_Bits(1,23)'number of bits = 23SSI_Mode(1)'Continuous mode
	<pre>Event: Par_1 = SSI_Read(1) 'read position value</pre>

SSI_Read

SSI Read returns the last saved counter value of the SSI counter.

Syntax

#Include ADwin-X.inc

ret val = **SSI Read**(dcdr no)

Parameters

dcdr_no	Number (1) of the SSI decoder.	LONG
ret_val	Most recent counter value of the SSI decoder (= abso- lute value position of the encoder).	LONG

Notes

An encoder value is saved when the number of bits indicated by **SSI_Set_ Bits** are read.

In any case, the amount of bits is returned that is set before by **SSI_Set_Bits**, even if this does not correspond to the resolution of the encoder.

If so, the returned counter value depends on the encoder (see documentation of the manufacturer). Normally there are the following rules:

- If the encoder has a higher resolution, its exceeding least-significant bits are not used.
- If the encoder has a lower resolution as indicated, a 0 (zero) is read for each missing most-significant bit.

See also

SSI_Mode, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_Start, SSI_Startus

Valid for

X-A20+D, X-A20+DCT

Example

#Include ADwin-X.inc
Dim m, n, y As Long

Init:

```
SSI_Set_Clock(50)'clock rate = 500 kHzSSI_Set_Bits(1,23)'number of bits = 23SSI_Mode(1)'Continuous mode
```

Event:

```
Par_1 = SSI_Read(1) 'read position value

REM If you have an encoder with Gray-code:

m = 0 'delete value of the last conversion

y = 0 '-"-

For n = 1 To 32 'Check all 32 possible bits

m = (Shift_Right(Par_1, (32 - n)) And 1) XOr m

y = (Shift_Left(m, (32 - n))) Or y

Next n

Par_9 = y 'The result of the Gray/binary

'conversion in Par 9
```

SSI_Set_Bits

SSI_Set_Bits sets the amount of bits of a SSI decoder, which generate a complete encoder value.

The number of bits should be similar to the resolution of the encoder.

Syntax

#Include ADwin-X.inc

SSI_Set_Bits(dcdr_no, no_bits)

Parameters

dcdr_no	Number (1) of the SSI decoder.	LONG
no_bits	Amount (132) of bits, which are to be read for the encoder (corresponds to the encoder resolution).	LONG

Notes

The resolution (amount of bits) of the SSI encoder should be similar to the amount of bits being transferred.

It is always expected to get that certain amount of bits for an encoder value that was indicated before by **SSI_Set_Bits**, even if this does not correspond to the resolution of the encoder.

In this case, the returned counter value depends on the encoder (see documentation of the manufacturer). Normally there are the following rules:

- If the encoder has a higher resolution, its exceeding least-significant bits are not used.
- If the encoder has a lower resolution as indicated, a 0 (zero) is read for each missing most-significant bit.

See also

SSI_Mode, SSI_Read, SSI_Set_Clock, SSI_Set_Delay, SSI_Start, SSI_Status

Valid for

X-A20+D, X-A20+DCT

Example

#Include ADwin-X.inc

Init:

```
SSI_Set_Clock(50)
SSI_Mode(1)
SSI Set Bits(1,10)
```

'CLK (Taktrate) = 500 kHz 'set continuous mode '10 bits

Event:

 $Par_1 = SSI_Read(1)$

'read value of decoder

SSI_Set_Clock sets the clock rate (6.1 kHz to 12.5 MHz), with which the encoder is clocked.

Syntax

#Include ADwin-X.inc

SSI_Set_Clock(dcdr_no,prescale)

Parameters

dcdr_no	Number (1) of the SSI decoder.	LONG
prescale	Scale factor (24096) for setting the clock rate accor- ding to the equation: Clock rate = 25MHz / prescale.	LONG

Notes

After start-up of the module the default scale factor of 100 is used, corresponding to $250\,\text{kHz}$.

With scale factors above 4095, only the least-significant 12 bits are used as scale factor.

The possible clock frequency depends on the length of the cable, cable type, and the send and receive components of the encoder or decoder. Basically the following rule applies: The higher the clock frequency the shorter the cable length.

See also

SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Delay, SSI_Start, SSI_Status

Valid for

X-A20+D, X-A20+DCT

Example

#Include ADwin-X.inc

Init:

SSI_Set_Clock (10)	'CLK (Taktrate) = 2.5 MHz
<pre>SSI_Set_Bits(1,10)</pre>	'10 bits
SSI_Mode(1)	'set continuous mode

Event:

Par 1 $=$	SSI Read(1)	'read value	e of decoder

SSI_Set_Delay	SSI_Set_Dela for one SSI-dec		iting time between reading two encoder values becified module.		
	Syntax				
	#Include AI	Dwin-X.Inc			
	SSI_Set_De	lay(dcdr_no,	delay)		
	Parameters				
	dcdr_no	Number (1, time is to be	2) of the SSI decoder whose waiting LONG		
	delay		e (165535) in units of 20ns; the LONG ange is 20ns1310.7µs		
	Notes				
			arts after an encoder value is read completely not not completely not		
		After start-up of the module the default value of 1250 is used, corresponding to $25 \mu s$.			
	See also				
		SI_Set_Bits, SS	I_Set_Clock, SSI_Mode, SSI_Start, SSI_Status		
	Valid for X-A20+D, X-A	20+DCT			
	Example #Include ADwi	n-X.Inc			
	<pre>Init: SSI_Set_Cloc SSI_Set_Dela SSI_Set_Bits SSI_Mode(1)</pre>	ay (1,400)	'CLK (clock rate) = 1 MHz 'waiting time 8µs for decoder 1 '10 bits for decoder 1 'Set continuous-mode		
	Event: Par_1 = SSI_	Read(1)	'Read position value decoder 1		

SSI Start starts the reading of the SSI encoder (only in mode "single shot"). SSI_Start Syntax **#Include** ADwin-X.inc **SSI Start**(dcdr no) **Parameters** Number (1) of the SSI decoder. LONG dcdr no Notes In continuous mode, this instruction has no function, because the encoder values are nevertheless read out continuously. An encoder value will be saved only when the amount of bits is read, which is set by SSI Set Bits. A complete encoder value is always transferred, even if the operation mode is changing meanwhile. You can also start reading the SSI encoder with **Sync_All**. See also SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_ Status, Sync_All Valid for X-A20+D, X-A20+DCT Example **#Include** ADwin-X.inc Init: SSI_Set_Clock(250) 'CLK (Taktrate) = 100 kHz 'set continuous mode $\texttt{SSI}_\texttt{Mode}\left(\texttt{1}\right)$ '23 bits SSI_Set_Bits(1,23) Event: SSI Start(1) 'Read position value Do : Until (SSI Status(1) = 0) Rem If position value is read completely, then ... **Par 1** = **SSI Read**(1) 'read position value

Syntax #Include AD ret_val = S Parameters dcdr_no ret_val	SI_Status(dcdr_no)			
<pre>#Include AD ret_val = \$ Parameters dcdr_no</pre>	SI_Status(dcdr_no)			
ret_val = S Parameters dcdr_no	SI_Status(dcdr_no)			
Parameters dcdr_no				
dcdr_no				
	Number (1) of the SSI decoder.	LONG		
	Read-status of the decoder:0: Decoder is ready, that is a complete value been read.1: Decoder is reading an encoder value.	LONG ue was has		
Notes				
Use the status		'continuous" mode,		
SSI_Mode, SS	I_Read, SSI_Set_Bits, SSI_Set_Clock, SS	l_Set_Delay, SSI_		
	0+DCT			
Example #Include AD	win-X.inc			
Tnite				
	(250) 'CLK (Taktrate) = 10	0 kHz		
SSI_Mode(1)	'set continuous mode			
SSI_SEL_DICS				
Event:				
Rem If posit:	ion value is read completely, the	n		
	<pre>querying the sta See also SSI_Mode, SS Start Valid for X-A20+D, X-A2 Example #Include AD Init: SSI_Set_Clock SSI_Mode(1) SSI_Set_Bits(Event: SSI_Start(1) Do : Until (S Rem If positic</pre>	<pre>been read. 1: Decoder is reading an encoder value. Notes Use the status query only in the SSI mode "single shot". In ' querying the status is not useful. See also SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI Start Valid for X-A20+D, X-A20+DCT Example #Include ADwin-X.inc Init: SSI_Set_Clock(250) 'CLK (Taktrate) = 10 SSI_Mode(1) 'set continuous mode SSI_Set_Bits(1,23) '23 bits</pre>		

16.6 CAN interface

This section describes instructions, which apply to ADwin-X-A20:

- CAN_Msg (page 136)
- CAN_Init (page 137)
- CAN_Receive (page 138)
- CAN_RX_Set_Filter (page 140)
- CAN_Transmit (page 141)

CAN interface CAN Msg

CAN_Msg

CAN_Msg is a one-dimensional array consisting of 11 elements, where a CAN message is set for sending or read after receiving.

Syntax

#Include ADwin-X.Inc CAN_Msg[n] = value oder value = CAN_Msg[n] ramaters

Parameters

arameters		
n	Number of an array element (1 11).	LONG
value	Expression the value (0256) of which is written into or read from the message object.	LONG

Notes

The array elements of CAN_Msg [] have the following function:

Element no.	Content
CAN_Msg[18]	CAN message from data bytes 18.
CAN_Msg[9]	Number (08) of used data bytes.
CAN_Msg[10]	ID of the CAN message (11 bit or 29 bit).
CAN_Msg[11]	Receive time stamp (16 bit).

Enter the data bytes to be transferred, the byte number, and the messsage id into the arrays Feld CAN_Msg[], *before* sending them with CAN_Transmit. The time stamp has no effect for sending.

See also

CAN_Init, CAN_Receive, CAN_RX_Set_Filter, CAN_Transmit

Valid for

X-A20+COM

Example

```
#Include ADwin-X.Inc
REM Sends a 32-bit FLOAT value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see example at CAN_Receive)
#Define pi 3.14159265
Dim i As Long
```

Init:

Rem initialize CAN Controller 1, Baud rate 10kBaud
Par_1 = CAN_Init(1,10000)
If (Par_1 <> 0) Then Exit

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_Float32ToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes CAN_Msg[4] = Par_1 And OFFh 'assign LSB For i = 1 To 3 CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And OFFh Next i CAN_Msg[9] = 4 'message length in bytes CAN Msg[10] = 40 'ID

Event:

```
Rem send message, low priority, 11 bit-id
Par_2 = CAN_Transmit(1,0,0)
```

CAN_Init initializes the controller of a CAN interface. **CAN_Init** Syntax **#Include** ADwin-X.Inc ret val = CAN Init(can no, baudrate) **Parameters** LONG can_no Number (1, 2) of CAN interface. Baud rate of CAN controller in bit/second. LONG baudrate Status of initialization: LONG ret val -1: No CAN interface available. 0: Baud rate was set. 1: Invalid baud rate. Notes The instruction executes the following actions: · Reset (hardware reset of the CAN controller). Empty receive and send Fifo. • • Disable receive filters (see CAN_RX_Set_Filter). Set baud rate. • This instruction must be executed before you can access the CAN controller with other instructions. We recommend initialization in section LowInit: or Init:. See also CAN_Msg, CAN_Receive, CAN_RX_Set_Filter, CAN_Transmit Valid for X-A20+COM Example **#Include** ADwin-X.Inc Init: Rem initialize CAN Controller 1, Baud rate 50kBaud **Par 1** = **CAN Init**(1,50000) If (**Par_1** <> 0) Then Exit

CAN_Receive	ADWIII	
CAN_Receive	CAN_Receive returns whether a CAN message has been received in the FIFO of a CAN controller.	
	If yes, the oldest message of the FIFO is copied to the array CAN_Msg [] and the iden- tifier is returned.	
	Syntax	
	#Include ADwin-X.Inc	
	ret_val = CAN_Receive (can_no)	
	Parameters	
	can_no Number (1, 2) of CAN interface.	
	ret_val -1: No new CAN message in the FIFO. LONG >0: A new message has arrived, the value is the identifier of the message object. LONG	
	Notes	
	You can read a received message only once, then the message is deleted from the receive FIFO pf the CAN controller.	
	If more than 64 messages have been recieved without reading the messages the oldest data in the input FIFO is overwritten and is lost. Therefore make sure, that CAN messages are read faster than being received. A data loss is not indicated.	
	The CAN id length (11 bit or 29 bit) is not returned.	
	With CAN_RX_Set_Filter you can determine to receive only CAN messages with specified identifiers.	
	See also	
	CAN_Msg, CAN_Init, CAN_RX_Set_Filter, CAN_Transmit	
	Valid for	
	X-A20+COM	

Example

```
#Include ADwin-X.Inc

REM If a new message with the correct identifier is received,

REM the data is read out. The first 4 bytes of the message are

REM combined to a float value of length 32 bit. (Sending a

REM float value see example of CAN_Transmit).

Dim n As Long

Dim valuePi As Float32
```

Init:

```
Par_1 = 0
Rem initialize CAN Controller 1, Baud rate 50kBaud
Par_1 = CAN_Init(1,50000)
If (Par_1 <> 0) Then Exit
```

Event:

```
REM If a message is received, the data is read and the identifier
REM saved to Par_9.
REM The data bytes are in the array CAN_MSG[].
PAR 9 = CAN Receive(1)
```

```
If (Par_9 = 40) Then
  REM New message with identifier 40
Par_1 = CAN_Msg[1] 'Read high-byte
For n = 2 To 4 'Combine with remaining 3 bytes to
  Par_1 = Shift_Left(Par_1,8) + CAN_Msg[n] 'a 32-bit value
  Next n
  REM Convert bit pattern in Par_1 to data type Float32 and
  REM assign to the variable FPar_1.
  valuePi = Cast_LongToFloat32(Par_1)
FPar_1 = valuePi
Par_10 = CAN_Msg[11] 'time stamp (16 bit)
```

EndIfSending a float value see example of CAN_Transmit.

CAN_RX_Set_	CAN RX Set Fi	lter sets a receive filter for CAN messages with a selected	identifie		
	Syntax				
Filter	#Include ADwin-X.Inc				
		CAN_RX_Set_Filter(channel, filter_no,			
	filter	_enable, id, id_extend)			
	Parameters		1		
	channel	Number (1, 2) of CAN interface	LONG		
	filter_no	Number (14) of filter.	LONG		
	filter_ enable	Filter status: 0: Disable filter. 1: Enable filter.	LONG		
	id	Identifier (02 ¹¹ or 02 ²⁹) of the CAN messages which can be received.	LONG		
	id_extend	Length of identifier id: 0: 11 bit. 1: 29 bit.	LONG		
	ret_val	0: Filter has been set. <>0:Error while configuring filter.	LONG		
	Notes				
	We recommen	nd initialization of filters in section LowInit: Or Init:.			
	as a CAN mes	nd enable up to 4 receive filters for each CAN interface. As ssage has successfully passed one of the enabled filters, the e receive FIFO.			
	See also				
	CAN_Msg, CA	AN_Init, CAN_Receive, CAN_Transmit			
	Valid for				
	X-A20+COM				
	Example				
	#Include ADwi	n-X.Inc			
	Init: PAR_1 = 0	ize CAN Controller 1, Baud rate 50kBaud			
	Par_1 = CAN_ If (Par_1 <>	<pre>_Init(1,50000) > 0) Then Exit filter 3 of controller 1 with identifier 40</pre>			
		<pre>_RX_Set_Filter(1,3,1,40,0)</pre>			
		or a message, only identifier 40 is valid			
	PAR_9 = CAN_	Receive(1)			

CAN_Transmit

CAN_Transmit transmits the message in CAN_Msg to a CAN interface to be sent.

Syntax

#Include ADwin-X.Inc

CAN Transmit (can no, priority, id extend)

Parameters

can_no	Number (1, 2) of CAN interface.	LONG
priority	Sending priority of the message:0: Normal priority, message is sent via the output FIFO.1: High priority, message is to be sent next.	LONG
id_extend	Length of identifiers: 0: 11 bit. 1: 29 bit.	LONG
ret_val	0: Message is transmitted to CAN interface.-1: Sending buffer is full, transmit message again later.	LONG

Notes

In order to send a message follow these steps:

- Enter a message into array CAN MSG: Data bytes, number of data bytes, and identifier. The time stamp has no function.
- Transmit the message to the CAN interface with CAN Transmit.
- Check if the message has been transmitted correctly. •

The CAN interface sends the message as soon as the message object has received access rights to the CAN bus.

A high priority message is sent as very next message even when other message (of normal priority) are already waiting in the output FIFO. Messages of normal priority are sent in the order as they were transmitted to the output FIFO of the CAN interface.

See also

CAN_Msg, CAN_Init, CAN_Receive, CAN_RX_Set_Filter

Valid for

X-A20+COM

Example **#Include** ADwin-X.Inc REM Sends a 32-bit FLOAT value (here: Pi) as sequence of REM 4 bytes in a message object REM (Receiving of a float value see example at CAN Receive) **#Define** pi 3.14159265 Dim i As Long Init: Rem initialize CAN Controller 2, baud rate 50kBaud **Par_1** = **CAN_Init**(2,50000) If (**Par 1** <> 0) Then Exit REM Enable message object 6 of controller 1 REM for sending with the identifier 40 (11 bit) **P2_En_Transmit**(1,1,6,40,0) REM Create bit pattern of Pi with data type Long Par 1 = Cast Float32ToLong(pi) REM divide bit pattern (32 Bit) into 4 bytes **CAN_Msg[4]** = **Par_1** And **OFFh** 'assign LSB For i = 1 To 3 CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And OFFh Next i $CAN_Msg[9] = 4$ 'message length in bytes **CAN Msg**[10] = 40'message id Event: Par 2 = CAN Transmit(2,0,40) 'send message with 11 bit id

Par_2 = **CAN_Transmit**(2,0,40)'send message with .

Receiving a float value see example at CAN_Receive.

CAN interface CAN_Transmit

Available Baud rates

Available Baud rates [Bit/s]				
1000000.0000	888888.8889	800000.0000	727272.7273	666666.6667
615384.6154	571428.5714	533333.3333	500000.0000	470588.2353
444444.4444	421052.6316	400000.0000	380952.3810	363636.3636
347826.0870	333333.3333	320000.0000	307692.3077	296296.2963
285714.2857	266666.6667	250000.0000	242424.2424	235294.1176
222222.2222	210526.3158	205128.2051	200000.0000	190476.1905
181818.1818	177777.7778	173913.0435	166666.6667	160000.0000
156862.7451	153846.1538	148148.1481	145454.5455	142857.1429
140350.8772	133333.3333	126984.1270	125000.0000	123076.9231
121212.1212	117647.0588	115942.0290	114285.7143	111111.1111
106666.6667	105263.1579	103896.1039	102564.1026	100000.0000
98765.4321	95238.0952	94117.6471	90909.0909	88888.8889
87912.0879	86956.5217	84210.5263	83333.3333	81632.6531
80808.0808	80000.0000	78431.3725	76923.0769	76190.4762
74074.0741	72727.2727	71428.5714	70175.4386	69565.2174
68376.0684	67226.8908	66666.6667	66115.7025	64000.0000
63492.0635	62500.0000	61538.4615	60606.0606	60150.3759
59259.2593	58823.5294	57971.0145	57 142.8571	55944.0559
55555.5556	54421.7687	53333.3333	52631.5789	52287.5817
51948.0519	51282.0513	50000.0000	49689.4410	49382.7160
48484.8485	47619.0476	47337.2781	47058.8235	46783.6257
45714.2857	45454.5455	44444.4444	43956.0440	43478.2609
42780.7487	42328.0423	42105.2632	41666.6667	41025.6410
40816.3265	40404.0404	40000.0000	39215.6863	38647.3430
38461.5385	38277.5120	38095.2381	37037.0370	36363.6364
36199.0950	35714.2857	35555.5556	35087.7193	34782.6087
34632.0346	34482.7586	34188.0342	33613.4454	33333.3333
33057.8512	32921.8107	32388.6640	32258.0645	32000.0000
31746.0317	31620.5534	31372.5490	31250.0000	30769.2308
30651.3410	30303.0303	30075.1880	29629.6296	29411.7647
29304.0293	29090.9091	28985.5072	28673.8351	28571.4286
28070.1754	27972.0280	27777.7778	27681.6609	27586.2069
27210.8844	27027.0270	26936.0269	26755.8528	26666.6667
26315.7895	26143.7908	25974.0260	25806.4516	25641.0256
25396.8254	25078.3699	25000.0000	24844.7205	24767.8019
24691.3580	24615.3846	24390.2439	24242.4242	24024.0240
23809.5238	23668.6391	23529.4118	23460.4106	23391.8129
23255.8140	23188.4058	22988.5057	22857.1429	22792.0228
22727.2727	22408.9636	22222.2222	22160.6648	22038.5675
21978.0220	21739.1304	21680.2168	21621.6216	21505.3763
21390.3743	21333.3333	21276.5957	21220.1592	21164.0212
21052.6316	20833.3333	20779.2208	20671.8346	20512.8205
20460.3581	20408.1633	20202.0202	20050.1253	20000.0000
19851.1166	19753.0864	19704.4335	19656.0197	19607.8431
19512.1951	19323.6715	19230.7692	19138.7560	19047.6190

Available Baud rates [Bit/s]				
18912.5296	18867.9245	18823.5294	18648.0186	18604.6512
18518.5185	18433.1797	18390.8046	18306.6362	18181.8182
18140.5896	18099.5475	18018.0180	17857.1429	17777.7778
17738.3592	17582.4176	17543.8596	17429.1939	17391.3043
17316.0173	17241.3793	17204.3011	17094.0171	17021.2766
16949.1525	16913.3192	16842.1053	16806.7227	16771.4885
16666.6667	16632.0166	16563.1470	16528.9256	16460.9053
16393.4426	16326.5306	16260.1626	16227.1805	16194.3320
16161.6162	16129.0323	16000.0000	15873.0159	15810.2767
15779.0927	15686.2745	15625.0000	15594.5419	15503.8760
15473.8878	15444.0154	15384.6154	15325.6705	15238.0952
15180.2657	15151.5152	15122.8733	15094.3396	15065.9134
15037.5940	15009.3809	14842.3006	14814.8148	14705.8824
14652.0147	14571.9490	14545.4545	14519.0563	14492.7536
14414.4144	14336.9176	14311.2701	14285.7143	14260.2496
14184.3972	14109.3474	14035.0877	13986.0140	13937.2822
13913.0435	13888.8889	13840.8304	13793.1034	13722.1269
13675.2137	13605.4422	13582.3430	13559.3220	13513.5135
13468.0135	13445.3782	13377.9264	13333.3333	13289.0365
13223.1405	13157.8947	13136.2890	13114.7541	13093.2897
13071.8954	13008.1301	12987.0130	12903.2258	12882.4477
12820.5128	12800.0000	12759.1707	12718.6010	12698.4127
12578.6164	12558.8697	12539.1850	12500.0000	12422.3602
12403.1008	12383.9009	12345.6790	12326.6564	12307.6923
12288.7865	12195.1220	12158.0547	12121.2121	12066.3650
12030.0752	12012.0120	11994.0030	11922.5037	11904.7619
11851.8519	11834.3195	11764.7059	11730.2053	11695.9064
11661.8076	11627.9070	11611.0305	11594.2029	11544.0115
11494.2529	11477.7618	11428.5714	11396.0114	11379.8009
11363.6364	11347.5177	11299.4350	11220.1964	11204.4818
11188.8112	11111.1111	11080.3324	11034.4828	11019.2837
10989.0110	10943.9124	10928.9617	10884.3537	10869.5652
10840.1084	10810.8108	10796.2213	10781.6712	10752.6882
10695.1872	10666.6667	10638.2979	10610.0796	10582.0106
10540.1845	10526.3158	10457.5163	10430.2477	10416.6667
10389.6104	10335.9173	10322.5806	10296.0103	10269.5764
10256.4103	10230.1790	10204.0816	10101.0101	10088.2724
10062.8931	10025.0627	10012.5156	10000.0000	9937.8882
9925.5583	9876.5432	9852.2167	9828.0098	9803.9216
9791.9217	9768.0098	9756.0976	9696.9697	9685.2300
9661.8357	9615.3846	9603.8415	9569.3780	9523.8095
9456.2648	9433.9623	9411.7647	9400.7051	9367.6815
9356.7251	9324.0093	9302.3256	9291.5215	9259.2593
9227.2203	9216.5899	9195.4023	9153.3181	9142.8571
9090.9091	9070.2948	9049.7738	9039.5480	9009.0090
8958.5666	8928.5714	8918.6176	8888.8889	8879.0233

CAN interface CAN_Transmit

Available Baud rates [Bit/s]				
8869.1796	8859.3577	8771.9298	8743.1694	8714.5969
8695.6522	8658.0087	8648.6486	8620.6897	8602.1505
8592.9108	8556.1497	8547.0085	8510.6383	8483.5631
8474.5763	8465.6085	8456.6596	8421.0526	8403.3613
8385.7442	8333.3333	8281.5735	8264.4628	8255.9340
8230.4527	8205.1282	8196.7213	8163.2653	8130.0813
8113.5903	8105.3698	8097.1660	8088.9788	8080.8081
8064.5161	8000.0000	7976.0718	7944.3893	7936.5079
7905.1383	7843.1373	7812.5000	7804.8780	7797.2710
7774.5384	7751.9380	7736.9439	7729.4686	7714.5612
7692.3077	7662.8352	7655.5024	7619.0476	7590.1328
7575.7576	7561.4367	7547.1698	7532.9567	7518.7970
7469.6545	7441.8605	7421.1503	7407.4074	7400.5550
7386.8883	7352.9412	7326.0073	7285.9745	7272.7273
7259.5281	7246.3768	7187.7808	7168.4588	7142.8571
7136.4853	7130.1248	7 111.1111	7098.4916	7092.1986
7054.6737	7017.5439	6993.0070	6956.5217	6944.4444
6926.4069	6902.5022	6896.5517	6861.0635	6820.1194
6808.5106	6802.7211	6791.1715	6779.6610	6734.0067
6688.9632	6683.3751	6666.6667	6611.5702	6578.9474
6568.1445	6562.7564	6557.3770	6535.9477	6530.6122
6493.5065	6456.8200	6451.6129	6441.2238	6410.2564
6400.0000	6379.5853	6349.2063	6324.1107	6289.3082
6274.5098	6269.5925	6250.0000	6245.1210	6211.1801
6172.8395	6163.3282	6153.8462	6144.3932	6102.2121
6060.6061	6046.8632	6037.7358	5997.0015	5961.2519
5952.3810	5925.9259	5895.3574	5865.1026	5847.9532
5818.1818	5797.1014	5772.0058	5747.1264	5714.2857
5702.0670	5681.8182	5649.7175	5614.0351	5610.0982
5555.5556	5521.0490	5517.2414	5464.4809	5434.7826
5423.7288	5376.3441	5333.3333	5291.0053	5245.9016
5208.3333	5161.2903	5079.3651	5000.0000	

16.7 RSxxx Interface

This section describes instructions to access RSxxx interfaces of ADwin-X-A20-COM:

- RS_Read_FIFO (page 148)
- RS_Init (page 147)
- RS_Write_FIFO (page 149)
- RS_Write_FIFO_Full (page 150)
- RS_Write_FIFO_Empty (page 151)

RS Init initialize	es one RSxxx interface.		RS_Init
The following para Transf Use of Data lo Amoun Transf	KO_IIII		
Syntax			
#Include Al	Dwin-X.Inc		
	annel,baud,parity,bits,stop, ndshake)		
Parameters			
channel	Number of RSxxx interface (1).	LONG	
baud	Transfer rate in Baud: 35 115.200.	LONG	
parity	Use of test bits: 0: without parity bit. 1: even parity. 2: odd parity.	LONG	
bits	Amount of data bits (68).	LONG	
stop	Amount of stop bits. 0: 1 stop bit. 1: 1½ stop bits. 2: 2 stop bits.	LONG	
handshake	Transfer protocol: 0: RS232, no handshake.	LONG	

Notes

RS_Init is necessary before working first with the selected RSxxx interface, in order to set the interface parameters. They must be identical to the remote station, in order to verify a correct transfer.

See also

RS_Read_FIFO, RS_Write_FIFO, RS_Write_FIFO_Full, RS_Write_FIFO_ Empty

Valid for

X-A20+COM

Example

#Include ADwin-X.Inc

Init:

Rem Initialize RSxxx interface 1: 9600 Baud, without parity, Rem 8 data bits, 1 stop bit, hardware handshake. RS_Init(1,9600,0,8,0,1)

RS_Read_FIFO		
RS_Read_FIFO	RS_Read_Fifo reads a value from the input FIFO of the RSxxx i	nterface.
	Syntax	
	#Include ADwin-X.Inc	
	<pre>ret_val = RS_Read_Fifo(channel)</pre>	
	Parameters	LONG
	channel Number of RSxxx interface (1).	LONG
	ret_val Contents of the input FIFO: -1: FIFO is empty. ≥0: Transferred value (0255).	LONG
	Notes	
	The input FIFO can hold up to 64 values.	
	See also	
	RS_Init, RS_Write_FIFO, RS_Write_FIFO_Full, RS_Write_FIFO_E	mpty
	Valid for	
	X-A20+COM	
	Example #Include ADwin-X.Inc	
	<pre>Init: Rem Initialize RSxxx interface 1: 9600 Baud, with Rem 8 data bits, 1 stop bit, hardware handshake. RS_Init(1,9600,0,8,0,1)</pre>	out parity,
	Event: Rem Get a value from the FIFO. If the FIFO is emp Rem -1 is returned. PAR_1 = RS_Read_Fifo (1)	pty,

RS Write FIFO writes a value into the send-FIFO of the RSxxx interface. **RS_Write_FIFO** Syntax **#Include** ADwin-X.Inc ret val = RS Write FIFO(channel,value) **Parameters** channel Number of RSxxx interface (1). LONG Value to be written into the send-FIFO. LONG value Status message: LONG ret val 0: Data are transferred successfully. 1: Data were not transferred, send-FIFO is full. Notes The instruction checks first if there is at least one free memory cell in the send-FIFO. If so, the transferred value is written into the FIFO (return value 0); otherwise a 1 is returned, indicating that the FIFO is full and writing is not possible. With RS Write FIFO Full, you can check in advance if there is space in the send FIFO. The send FIFO can hold up to 64 values. See also RS Init, RS Read FIFO, RS Write FIFO Full, RS Write FIFO Empty Valid for X-A20+COM Example **#Include** ADwin-X.Inc Dim val As Long INIT: Rem Initialize RSxxx interface 1: 9600 Baud, without parity, Rem 8 data bits, 1 stop bit, hardware handshake. **RS Init** (1,9600,0,8,0,1) EVENT: Rem If the FIFO is not full, [val] is written into the FIFO. Rem Otherwise a 1 in Par 1 indicates that writing into the Rem FIFO ist not possible (FIFO full). **PAR 1** = **RS Write FIFO**(1, val)

RSxxx Interface RS_Write_FIFO_Full

RS_Write_FIFO_	RS_Write_FIFO_Full checks if the send FIFO of the RSxxx interface is already full.
Full	Syntax
	#Include ADwin-X.Inc
	ret_val = RS_Write_FIFO_Full (channel)
	Parameters
	channel Number of RSxxx interface (1).
	ret_valStatus if the send FIFO is full:LONG0:False, send FIFO is not full.1:1:True, send FIFO is full.
	Notes
	The send FIFO can hold up to 64 values.
	See also
	RS_Init, RS_Read_FIFO, RS_Write_FIFO, RS_Write_FIFO_Empty
	Valid for
	X-A20+COM
	Example
	#Include ADwin-X.Inc
	Dim val As Long
	<pre>Init: Rem Initialize RSxxx interface 1: 9600 Baud, without parity, Rem 8 data bits, 1 stop bit, hardware handshake. RS_Init(1,9600,0,8,0,1)</pre>
	<pre>Event: Rem If the FIFO is not full, write [val] into the FIFO. If (RS_Write_Fifo_Full(1) <> 1) Then PAR_1 = RS_Write_Fifo(1,val) EndIf</pre>

RS_Write_FIFO Syntax	Empty checks if the send FIFO of the RSxxx interfa	ice is empty.	RS_Write_FIFO_
#Include A	Dwin-X Inc		Empty
	RS Write FIFO Empty(channel)		
Parameters			
channel	Number of RSxxx interface (1).	LONG	
ret_val	Status if the send FIFO is empty: 0: False, send FIFO is not empty. 1: True, send FIFO is empty.	LONG	
Notes			
The send FIF	O can hold up to 64 values.		
See also			
RS_Init, RS_F	Read_FIFO, RS_Write_FIFO, RS_Write_FIFO_Full		
Valid for			
X-A20+COM			
Example #Include A #Define va	Dwin - X.Inc l Par_2		
Rem 8 dat	alize RSxxx interface 1: 9600 Baud, with a bits, 1 stop bit, hardware handshake. .,9600,0,8,0,1)		
If (RS_Wr	<pre>end FIFO is not full, write [val] into t ite_Fifo_Full(1) <> 1) Then RS_Write_Fifo(1,val)</pre>	he FIFO.	
Rem Wait	<pre>until send FIFO is empty i.e. value was l (RS_Write_FIFO_Empty(1) = 1)</pre>	sent.	

16.8 Profibus interface

This section describes instructions to access a Profibus node on ADwin-X-A20:

- Init_Profibus (page 153)
- Run_Profibus (page 155)

Init_Profibus

Init_Profibus initializes the Profibus slave.

Syntax

#Include ADwin-X.inc

Parameters

dev_adr	Slave node address / station address (1125) on the Profibus.	LONG
in_mod_cnt	Size (1, 2, 4, 8, 16, 32, 61) of the input area in the Pro- fibus slave in double words.	LONG
out_mod_ cnt	Size (1, 2, 4, 8, 16, 32, 61) of the output area in the Pro- fibus slave in double words.	LONG
work_arr[]	Array to store data for operation of the Profibus Slave. The array must have at least AB_WORK_ARR_LEN (5000) elements.	ARRAY LONG
ret val		

Notes

This instruction must be processed before working with Profibus slave.

Init_Profibus should be processed in a program section with low priority, because of the long processing time (about 2-3 seconds). Using the instruction in a (non-interruptable) high priority process, the communication between PC and *ADwin* system would be interrupted too long and thus produce an error message (timeout).

Smaller data ranges accelerate the data transfer via the Profibus.

Station address and size of data ranges must equal the project settings of the Profibus.

See also

Run_Profibus

Valid for

- / -

Example **#Include** ADwin-X.inc **#Define** node 2 'slave node address #Define out_arr Data_2 **#Define** in arr **Data 3** Dim out arr[1000] As Long Dim in arr[1000] As Long Dim conf arr[AB WORK ARR LEN] As Long Dim i As Long Dim state As Long LowInit: Processdelay = 3000000 'set to 100 Hz Rem init Profibus interface: input data area = 8 DWords Rem and output data area = 16 DWords Par_10 = Init_Profibus(node, 8, 16, conf_arr) Event: Rem set data in out_arr[] to be transferred For i = 1 To 16 out_arr[i] = (out_arr[i] + i) Next i Rem send and read data state = Run_Profibus(out_arr,in_arr,16,conf_arr) Par_2 = state

Rem now process received data stored in in_arr[1..8]; Rem in_arr[9..16] has been filled with unusable data, Rem in_arr[17..1000] remains unused here.

Run_Profibus exchanges data with the Profibus slave.

Syntax

```
#Include ADwin-X.inc
```

Parameters

out_pd_ arr[]	Array, from which the Profibus slave reads data (number see pd_arr_len) and writes them to the Profibus.	ARRAY LONG
in_pd_ arr[]	Array, into which the Profibus Slave writes data (number see pd_arr_len) which are read from the Profibus.	ARRAY LONG
pd_arr_len	Number of double words (1, 2, 4, 8, 16, 32, 61), which are transferred in in_pd_arr[] and out_pd_arr[].	LONG
work_arr[]	Array holding data for operation of the Profibus Slave, see Init_Profibus.	ARRAY LONG
ret_val	State of operation of the Profibus slave:0: Initializing.2: Slave waits for bus start by master	LONG

4: Normal operation.

Notes

The number **pd_arr_len** is used for both reading and writing data, even though the input area may be initialized with a different value than the output area. The arrays in_pd_arr[] and out_pd_arr[] must be declared with at least the size **pd_arr_len**.

Each array element in in_pd_arr[] and out_pd_arr[] contains 1 double word. A double word equals a value of data type Long.

See also

Init_Profibus

Valid for

- / -

Example

see Init_Profibus

16.9 Profinet interface

This section describes instructions to access a Profinet interface of ADwin-X-A20:

- Init_ProfinetIO (page 157)
- Run_ProfinetIO (page 158)

Init_ProfinetIO

Init ProfinetIO initializes an array for operation with the Profinet slave.

Syntax

```
#Include ADwin-X.inc
ret_val = Init_ProfinetIO(in_size, out_size, work_arr[])
```

Parameters

in_size	Size (1, 2, 4, 8, 16, 32, 64, 128, 196, 256, 320) of the input area in the Profinet slave, in double words; 1 double word = 4 byte.	LONG
out_size	Size (1, 2, 4, 8, 16, 32, 64, 128, 196, 256, 320) of the output area in the Profinet slave, in double words; 1 double word = 4 byte.	LONG
work_arr[]	Array which is initialized for the operation with the Profinet slave. The array must have at least AB_WORK_ARR_LEN (5000) elements.	ARRAY LONG
ret_val	Status of initialization: 0: initialization was successful.	LONG

-1: Error data area sizes are wrong.

Notes

This instruction must be processed before working with Profinet slave.

The size of data areas must be the same as while projecting the Profinet. Please note while projecting, that the size of data areas may be given in other units than byte (e.g. Word, QWord).

See also

Run_ProfinetIO

Valid for

- / -

Example

```
#Include ADwin-X.inc
#Define out_arr Data_2
#Define in_arr Data_3
```

```
Dim out_arr[76] As Long
Dim in_arr[76] As Long
Dim conf_arr[AB_WORK_ARR_LEN] As Long
Dim i As Long
Dim state As Long
```

```
LowInit:

Processdelay = 3000000 'set to 100 Hz

Rem init Profinet interface: input data area = 128 DWords

Rem and output data area = 256 DWords

Par 10 = Init ProfinetIO(128, 256, conf arr)
```

Event:

```
Rem set data in out_arr[] to be transferred
For i = 1 To 76
  out_arr[i] = (out_arr[i] + i)
Next i
Rem send and read data
```

```
state = Run_ProfinetIO(out_arr,in_arr,256,conf_arr)
Par 2 = state
```

Rem now process received data in in arr[] ...

Run_ProfinetIO

Run_ProfinetIO exchanges data with the Profinet Slave.

Syntax

#Include ADwin-X.inc

Parameters

out_pd_	Array, from which the Profinet Slave reads data (number pd_arr_len) and writes them to the Profinet bus.					
arr[]						
in_pd_arr[]	Array, into which the Profinet Slave writes received data	ARRAY				
	(number pd_arr_len).					
pd_arr_len	Number of double words $(1, 2, 4, 8, 16, 32, 64, 128, 196, 256, 320)$, which are transferred in $in_pd_arr[]$ and $out_pd_arr[]$.	LONG				
work_arr[]	Array holding data for operation of the Profinet Slave,	ARRAY				
	SEE Init_ProfinetIO.					
ret_val	State of operation of the Profinet Slave: 0: Initialization.	LONG				
	2: Slave waits for bus start by master.					
	4: Normal operation.					

Notes

The number **pd_arr_len** of values is the same for both data transfer arrays even though the input area may be initialized with a different size than the output area.

Each array element in <u>in_pd_arr</u>[] and <u>out_pd_arr</u>[] stores 4 data bytes = 1 double word. A double word corresponds to a value of data type Long.

See also

Init_ProfinetIO

Valid for

- / -

Example

see Init_ProfinetIO

16.10 EtherCAT interface

This section describes instruction to access the EtherCAT node on ADwin-X-A20:

- Init_EtherCAT (page 160)
- Run_EtherCAT (page 162)

Init_EtherCAT

Init_EtherCAT initializes an array for operation with the EtherCAT slave.

Syntax

#Include ADwin-X.inc

Parameters

in_size	Size (0360) of the input area in the EtherCAT slave in double words.	LONG
out_size	Size (0360) of the output area in the EtherCAT slave in double words.	LONG
data_type	Data type of input and output area. A value in the area Wert belegt ein Doppelwort (=4 Byte). Verfügbar sind: AB_DATA_TYPE_SINT32: Signed integer, 32 Bit. AB_DATA_TYPE_FLOAT: Floating point, 32 Bit.	LONG
work_arr[]	Array which is initialized for the operation with the Ether- CAT slave. The array must have at least <code>AB_WORK_</code> ARR_LEN (5000) elements.	ARRAY LONG
ret_val	Status of initialization: 0: initialization was successful. -1: Error data area sizes are wrong.	LONG

Notes

This instruction must be processed before working with EtherCAT Slave.

The size of data areas must be the same as while projecting the EtherCAT bus. Please note while projecting, that the size of data areas may be given in other units than byte (e.g. Byte, Word).

See also

Run_EtherCAT

Valid for

X-A20+ECAT

Example

ADbasiC#Include ADwin-X.inc #Define out_arr Data_2 #Define in_arr Data_3

'Data type according to Init_EtherCAT: ' AB_DATA_TYPE_SINT32 -> Long ' AB_DATA_TYPE_FLOAT -> Float32 Dim out_arr[1000] As Long Dim in_arr[1000] As Long Dim conf_arr[AB_WORK_ARR_LEN] As Long Dim i As Long Dim state As Long

LowInit:

Processdelay = 3000000 'set to 100 Hz
Rem init EtherCAT interface: input data area = 76 values
Rem and output data area = 92 values
Par_10 = Init_EtherCAT(76, 92, AB_DATA_TYPE_SINT32,
 conf_arr)

Event:

Rem set data in out_arr[] to be transferred
For i = 1 To 92
out_arr[i] = (out_arr[i] + i)
Next i

Rem send and read data
state = Run_EtherCAT(out_arr,in_arr,92,conf_arr)
Par_2 = state

Rem now process received data stored in in_arr[1..76]; Rem in_arr[77..92] has been filled with unusable data, Rem in_arr[93..1000] remains unused here.

Run_EtherCAT	Run_EtherCAT exchanges data with the EtherCAT slave.						
	Syntax						
	#Include ADwin-X.inc						
	<pre>ret_val = Run_EtherCAT(out_pd_arr[], in_pd_arr[],</pre>						
	<pre>pd_arr_len, work_arr[])</pre>						
	Parameters out_pd_ Array, from which the EtherCAT Slave reads data (num- Array)	RRAY					
	arr [] bernd arr len) and writes them to the EtherCAT	ONG					
		LOAT					
	in_pd_arr[] Array, into which the EtherCAT Slave writes received At data (number pd_arr_len).						
		ONG LOAT					
		ONG					
	in_pd_arr[] and out_pd_arr[].						
	work_arr[] Array holding data for operation of the Profinet Slave, Array see Init_EtherCAT.	RRAY ONG					
	ret_valState of operation of the Profinet Slave:L0:Initialization.2:Slave waits for bus start by master.	ONG					
	4: Normal operation.						
	Notes						
	The number pd_arr_len of values is the same for both data transfer arra even though the input area may be initialized with a different size than the out area.						
	The arrays in_pd_arr[] and out_pd_arr[] must be declared with the size of pd_arr_len at least.						
	<pre>Declare the arrays in _pd_arr[] and out _pd_arr[] with the data type which fits to the setting of Init_EtherCAT, parameter data_type: Long for AB_DATA_TYPE_SINT32 Float32 for AB_DATA_TYPE_FLOAT</pre>						
	Each array element in in_pd_arr[] and out_pd_arr[] has a size of 4 data bytes = 1 double word.						
	See also						
	Init_EtherCAT						
	Valid for						
	X-A20+ECAT						
	Example						
	see Init_EtherCAT						

16.10.1LS-Bus + ADwin-X-A20

The section describes instructions of the LS-bus interface of ADwin-X-A20:

- LS_DIO_Init (page 164)
- LS_DigProg (page 166)
- LS_Dig_IO (page 168)
- LS_Digout_Long (page 170)
- LS_Digout_Long_BS (page 171)
- LS_Digin_Long (page 173)
- LS_Digin_Long_BS (page 174)
- LS_Get_Output_Status (page 176)
- LS_Reset (page 178)
- LS_Watchdog_Init (page 179)
- LS_Watchdog_Reset (page 181)

LS_DIO_Init

LS_DIO_Init	LS_DIO_Init initializes the specified module of type HSM-24V on the LS bus and returns the error status.								
	Syntax								
	#Include ADwin-X.Inc								
	ret_val = LS_DIO_Init(ls-module)								
	Parameters								
	ls-module Specified module address on the LS bus (115).								
	ret_val Return value representing the error status: LONG -1: Communication with module is impossible. >0: Bit pattern with several error bits. Bit = 0: No error. Bit = 1: Error occurred.								
	Bit no. 318 7 6 54 3 2 1 0								
	 - :don't care (mask with OCFh). Par:Parity error during data transfer on the LS bus. Ovr:Overrun error during data transfer on the LS bus. Time:Timeout error during data transfer on the LS bus. WD:Watchdog was released. The channel drivers are deactivated. Temp1:Superheating on driver for channels 116. Driver is deactivated. Temp2:Superheating on driver for channels 1732. Driver is deactivated. 								
	Notes								
	The instruction only be used in section Init :, since it takes long processing time.								
	 The initialization does the following settings: All DIO channels are set as inputs. Other settings see LS_Digprog. The over-current status (> ca. 500mA) is reset. The error status for superheating is reset. The error status for timeout on the LS bus is reset. 								
	The module stores occurring errors independently from the <i>ADwin</i> system. Therefore, error bits in the return value can refer to an error which has occurred some time earlier.								
	Please note: At program start, ignore the error bit WD until the watchdog counter is reset with LS_Watchdog_Init. The watchdog counter starts with power-up of the module and normally has launched an error until program start.								
	The error "superheating" of a driver may only occur, if over-currrent in the range of 150500 mA is present on several channels at the same time. Irrespective of this, an over-current of mor than 500 mA automatically switches off the concerned channel.								
	The channels of the module HSM-24V may only be operated in the range of 0150mA. This ensures the module HSM-24V is working permanently without interruption even if all channels are used in parallel.								
	See also								
	LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_Get_Output_ Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset								
	Valid for								
	HSM-24V + X-A20								

Example

REM Example process for one module HSM-24V and ADwin-X **#Include** ADwin-X.inc

Init:

```
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 0Fh)
```

Event:

REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

LS_DigProg

ADwin

LS_DigProg

LS_Digprog sets the digital channels 1...32 of the specified module of type HSM-24V on the LS bus as inputs or outputs in groups of 8.

Syntax

#Include ADwin-X.Inc
ret_val = LS_Digprog(ls-module, pattern)

Parameters

ls-moduleSpecified module address on the LS bus (115).patternBit pattern, setting the channels as inputs or outputs: Bit = 0: Set channels as inputs. Bit = 1: Set channels as outputs.							LONG LONG
Bit N	No.	314	3	2	1	0	
Cha	nnel no.	_	32:25	24:17	16:9	8:1	
ret_valReturn value representing the error status: -1: Communication with module is impossible. >0: Bit pattern with several error bits. Bit = 0: No error. 							LONG

Bit no.	318	7	6	54	3	2	1	0
Status	-	Temp2	Temp1	-	WD	Time	Ovr	Par

- :don't care (mask with OCFh).

Par:Parity error during data transfer on the LS bus.

Ovr:Overrun error during data transfer on the LS bus.

Time:Timeout error during data transfer on the LS bus.

WD:Watchdog was released. The channel drivers are deactivated.

Temp1:Superheating on driver for channels 1...16. Driver is deactivated.

Temp2:Superheating on driver for channels 17...32. Driver is deactivated.

Notes

The instruction only be used in section **Init**:, since it takes long processing time.

After initialization with LS_DIO_Init all channels are set as inputs.

The channels may be set as inputs or outputs in groups of 8 only (4 relevant bits only, other bits are ignored).

See also

LS_DIO_Init, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_Get_Output_ Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example

REM Example process for one module HSM-24V and ADwin-X **#Include** ADwin-X.inc

Init:

```
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 0Fh)
```

Event:

REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

LS_Dig_IO

LS_Dig_IO

LS_Dig_IO sets all digital outputs of the specified module HSM-24V on the LS bus to the level High oder Low and returns the status of all channels as bit pattern.

Syntax

#Include ADwin-X.Inc

ret_val = LS_DIG_IO(pattern)

Parameters

pattern	Bit = 0: Se	Bit pattern, setting the digital outputs (see table). Bit = 0: Set outputs to level Low. Bit = 1: Set outputs to level High.								
ret_val	nels (see Bit = 0: Ch	Bit pattern representing the real state of all digital chan- nels (see table). Bit = 0: Channel has level Low. Bit = 1: Channel has level High.								
	Bit No.	31	30	29		2	1	0		
	Channel no.	32	31	30		3	2	1		

Notes

LS Dig IO only runs correctly, if the following conditions are given:

- There is only one module on the LS bus.
- The module is of type HSM-24V.
- The module's address is set to 1.
- After calling Ls_Dig_IO, no other LS bus instruction will be used.

The channels are set as inputs or outputs using LS_Digprog.

The **pattern** is applied to those channels only, which are set as outputs. Bits for input channels are ignored.

The return value contains the real state of both inputs and outputs. The inputs have a filter causing about $12\mu s$ signal delay.

LS_Dig_IO resets the watchdog counter of the module to the start value. The counter remains enabled. The start value is set using **LS_Watchdog_Init**.

Reset the active watchdog timer at least once to the start value within the count-

ing interval, in order to keep the module working.

Valid for

HSM-24V + X-A20

See also

LS_DIO_Init, LS_DigProg, LS_Digout_Long, LS_Digin_Long, LS_Get_Output_ Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Example

REM Example process for one module HSM-24V and ADwin-X **#Include** ADwin-X.inc

Init:

```
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 0Fh)
```

Event:

REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

LS Digout Long sets or clears all digital outputs of the specified module HSM-24V LS_Digout_Long on the LS bus according to the transferred 32 bit value. Syntax **#Include** ADwin-X.Inc LS_Digout_Long(ls-module,pattern) **Parameters** ls-module Specified module address on the LS bus (1...15). LONG Bit pattern, setting the digital outputs (see table). LONG pattern Bit = 0: Set outputs to level Low. Bit = 1: Set outputs to level High. Bit No. 31 30 2 1 0 ... Channel no. 2 32 31 3 1 ... Notes The channels are set as inputs or outputs using LS Digprog. The pattern is applied to those channels only, which are set as outputs. Bits for input channels are ignored. See also LS DIO Init, LS DigProg, LS Dig IO, LS Digin Long, LS Digout Long BS, LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset Valid for HSM-24V + X-A20 Example REM Example process for ADwin-X-A20 and 2 modules HSM-24V REM Set process to low priority! **#Include** ADwin-X.inc Init: **Processdelay** = 4000000 '10Hz HP REM settings for LS module 1 Par 1 = LS DIO Init(1) REM enable watchdog with 1.1 s **Par_2** = **LS_Watchdog_Init**(1, 1, 1100) REM set LS channels 1...32 as outputs $Par_3 = LS_Digprog(1, 01111b)$ REM settings for LS module 3 Par_11 = LS_DIO_Init(3) REM enable watchdog with 1.1 s $Par_{12} = LS_Watchdog_Init(3, 1, 1100)$ REM set LS channels 1...32 as inputs Par_13 = LS_Digprog(3, 0h) Event: REM set one LS channel to high, rotating from 1 to 32 Inc Par 15 If (Par 15 \geq 32) Then Par 15 = 0 Par_16 = Shift_Left(1, PAR_15) REM set LS channels of module 1 LS_Digout_Long(1, PAR_16) REM read LS channels of module 3 Par_17 = LS_Digin_Long(3) REM reset watchdog LS_Watchdog_Reset()

Dwin

LS Digout Long BS

LS_Digout_Long_

LS Digout Long BS sets or clears all digital outputs of the specified module HSM-24V on the LS bus according to the transferred 32-bit value and returns the error status.

BS Syntax **#Include** ADwin-X.Inc LS_Digout_Long_BS(ls_module,pattern,status) Parameters ls-module Specified module address on the LS bus (1...15). LONG Bit pattern, setting the digital outputs (see table). LONG pattern Bit = 0: Set outputs to level Low. Bit = 1: Set outputs to level High. Bit No. 31 30 2 1 0 ... Channel no. 32 2 1 31 3 Bit pattern representing the error status: LONG status 0: O.k. -1: No communication possible. >0: Bit pattern with error bits. Bit = 0: No error. Bit = 1: Error occurred. Bit no. 31:8 6 5:4 2 7 3 1 0 Status _ Temp2 Temp1 _ WD Time Ovr Par - :don't care (mask with OCFh). Par:Parity error during data transfer on the LS bus.

Ovr:Overrun error during data transfer on the LS bus.

Time:Timeout error during data transfer on the LS bus.

WD:Watchdog was released. The channel drivers are deactivated.

Temp1:Superheating on driver for channels 1...16. Driver is deactivated.

Temp2:Superheating on driver for channels 17...32. Driver is deactivated.

Notes

The channels are set as inputs or outputs using LS Digprog.

The pattern is applied to those channels only, which are set as outputs. Bits for input channels are ignored.

See also

LS DIO Init, LS DigProg, LS Dig IO, LS Digin Long BS, LS Digout Long, LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example REM Example process for ADwin-X-A20 and 2 modules HSM-24V REM Set process to low priority! **#Include** ADwin-X.inc Init: Processdelay = 4000000 '10Hz HP REM settings for LS module 1 **Par 1** = **LS DIO Init**(1) REM enable watchdog with 1.1 s **Par_2** = **LS_Watchdog_Init**(1, 1, 1100) REM set LS channels 1...32 as outputs **Par_3** = **LS_Digprog**(1, 01111b) REM settings for LS module 3 Par 11 = LS DIO Init(3) REM enable watchdog with 1.1 s Par 12 = LS Watchdog Init(3, 1, 1100) REM set LS channels 1...32 as inputs **Par 13** = **LS Digprog** (3, 0h)Event: REM set one LS channel to high, rotating from 1 to 32 Inc Par 15 If (Par_15 \geq 32) Then Par_15 = 0 Par_16 = Shift_Left(1, PAR_15) REM set LS channels of module 1 LS_Digout_Long_BS(1, PAR_16, Par_5) If (Par_5 <> 0) Then End 'exit on error) REM read LS channels of module 3 Par_17 = LS_Digin_Long_BS(3, Par_6) If (Par_6 <> 0) Then End 'exit on error) REM reset watchdog LS_Watchdog_Reset()

LS_Digin_Long returns the status of all channels of the specified module HSM-24V on the LS bus as bit pattern.

LS_Digin_Long

Syntax

#Include	ADwin-X.Inc
----------	-------------

```
ret_val = LS_DIGIN_LONG(ls-module)
```

Parameters

ls-module	Specified module address on the LS bus (115).	LONG
ret_val	Bit pattern representing the real state of all digital chan- nels (see table). Bit = 0: Channel has level Low. Bit = 1: Channel has level High.	LONG
i		

Bit No.	31	30	 2	1	0
Channel no.	32	31	 3	2	1

Notes

We recommend to set the used channels as inputs with **LS_Digprog** before use.

The return value contains the real state of both inputs and outputs. The inputs have a filter causing about $12 \,\mu s$ signal delay.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digin_Long_BS, LS_Digout_Long, LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example

```
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc
```

```
Init:
```

```
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 01111b)
```

```
REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1...32 as inputs
Par 13 = LS Digprog(3, 0h)
```

Event:

```
REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, PAR_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
```

LS Watchdog Reset()

LS_Digin_Long_ BS

LS_Digin_Long_BS returns the status of all channels of the specified module HSM-24V on the LS bus as bit pattern as well as the error status.

ADwin

Syntax

#Include ADwin-X.Inc

ret_val = LS_Digin_Long_BS(ls_module, status)

Parameters

ls_module	Specified module address (115) on the LS bus.	LONG
status	Bit pattern representing the error status: 0: O.k. -1: No communication possible. >0: Bit pattern with error bits. Bit = 0: No error. Bit = 1: Error occurred.	LONG

Bit no.	31:8	7	6	5:4	3	2	1	0
Status	_	Temp2	Temp1	-	WD	Time	Ovr	Par

- :don't care (mask with OCFh).

Par:Parity error during data transfer on the LS bus. Ovr:Overrun error during data transfer on the LS bus. Time:Timeout error during data transfer on the LS bus. WD:Watchdog was released. The channel drivers are deactivated. Temp1:Superheating on driver for channels 1...16. Driver is deactivated. Temp2:Superheating on driver for channels 17...32. Driver is deactivated.

ret_val	Bit pattern. Each bit (31:0) represents the state of a dig- ital channel (see table):	LONG
	Bit = 0: Channel has level Low.	
	Bit = 1: Channel has level High.	

Bit no.	31	30	 2	1	0
Channel no.	32	31	 3	2	1

Notes

We recommend to set the used channels as inputs with **LS_Digprog** before use.

The return value contains the real state of both inputs and outputs. The inputs have a filter causing about 12μ s signal delay.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digin_Long, LS_Digout_Long_BS, LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example

REM Example process for ADwin-X-A20 and 2 modules HSM-24V REM Set process to low priority! **#Include** ADwin-X.inc

Init:

Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 01111b)

```
REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1...32 as inputs
Par_13 = LS_Digprog(3, 0h)
```

Event:

REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long_BS(1, PAR_16, Par_5)
If (Par_5 <> 0) Then End 'exit on error)
REM read LS channels of module 3
Par_17 = LS_Digin_Long_BS(3, Par_6)
If (Par_6 <> 0) Then End 'exit on error)
REM reset watchdog
LS_Watchdog_Reset()

LS_Get_Output_ **Status**

LS_Get_Output_Status returns the over-current status of outputs of the specified module HSM-24V on the LS bus as bit pattern.

Syntax

#Include All ret_val = 1			ATUS	(ls-m	odul	e)			
Parameters									
ls-module	Specified r	nodule a	ddres	s on tl	ne LS	bus (115).	LONG
ret_val	Bit pattern status of a Bit = 0: Sta Bit = 1: Ov	digital ou andard st	utput (atus.	see ta	able).			current	LONG
	Bit no.	31	30		2	1	0		

Notes

A "superheating" error of a driver may only occur, if over-currrent in the range of 150...500mA is present on several channels at the same time. Irrespective of this, an over-current of more than 500mA automatically switches off the concerned channel.

31

...

After a "superheating" errorthe module is reset with LS DIO Init.

32

Channel no.

The channels of the module HSM-24V may only be operated in the range of 0...150mA. This ensures the module HSM-24V is working permanently without interruption even if all channels are used in parallel.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_ Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

3

2

1

Example

REM Example process for ADwin-X-A20 and 2 modules HSM-24V REM Set process to low priority! **#Include** ADwin-X.inc

Init: Processdelay = 4000000 '10Hz HP REM settings for LS module 1 Par_1 = LS_DIO_Init(1) REM enable watchdog with 1.1 s Par_2 = LS_Watchdog_Init(1, 1, 1100) REM set LS channels 1...32 as outputs Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1...32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:

REM check for over-current
Par_5 = LS_Get_Output_Status(1) + LS_Get_Output_Status(3)
If (Par_5 > 0) Then End 'over-current: Exit program
REM set one channel to high, rotating from 1 To 32
Inc Par_15

```
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, Par_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
LS_Watchdog_Reset()
```


LS_Reset					
LS_Reset					

LS_Reset setzt die Schnittstelle zum LS-Bus zurück.

Syntax

```
#Include ADwin-X.Inc
  LS Reset()
Parameters
```

-/-

Notes

Die Anweisung soll nur im Abschnitt INIT: verwendet werden, weil sie eine lange Ausführungszeit hat.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_ Get_Output_Status, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example

REM Example process for one module HSM-24V and ADwin-X **#Include** ADwin-X.inc

```
Init:
```

```
Processdelay = 4000000
                        '10Hz HP
LS Reset()
LS_Watchdog_Reset()
Par 1 = LS DIO Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 0Fh)
```

Event:

```
REM set one LS channel to high, rotating from 1 to 32
Inc Par 10
If (Par 10 >= 32) Then Par 10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par 12 = LS Dig IO (Par 11)
```

LS_Watchdog_Init

LS_Watchdog_Init enables or disables the watchdog counter of a specified module on the LS bus. If enabled, the counter is set to the start value and is started.

LS_Watchdog_Init

Syntax

#Include ADwin-X.Inc

ret_val = LS_WATCHDOG_INIT(ls-module,enable,time)

Parameters

-			
	ls-module	Specified module address on the LS bus (115).	LONG
	enable	Set status of watchdog counter: 0 : Disable watchdog counter. 1 : Enable watchdog counter.	LONG
	time	Release time (0107374) of the counter in milliseconds.	LONG
	ret_val	Return value representing the error status: -1: Communication with module is impossible. >0: Bit pattern with several error bits. Bit = 0: No error. Bit = 1: Error occurred.	LONG

Bit no.	318	7	6	54	3	2	1	0
Status	-	Temp2	Temp1	_	WD	Time	Ovr	Par

- :don't care (mask with OCFh).

Par:Parity error during data transfer on the LS bus.

Ovr:Overrun error during data transfer on the LS bus. Time:Timeout error during data transfer on the LS bus. WD:Watchdog was released. The channel drivers are deactivated. Temp1:Superheating on driver for channels 1...16. Driver is deactivated. Temp2:Superheating on driver for channels 17...32. Driver is deactivated.

Notes

The instruction only be used in section **Init**:, since it takes long processing time.

As long as the watchdog counter is enabled, it decrements the counter value continuously. After the set release time the counter value reaches 0 (zero). If so, the module assumes a malfunction and stops; thus, all output signals are reset.

After power-up of the module the counter is set to the start value 10ms and the watchdog counter is enabled.

Reset the active watchdog timer at least once to the start value within the counting interval, in order to keep the module working. To reset the module use any module specific instruction or LS_Watchdog_Reset.

The watchdog function is used as to monitor the connection between *ADwin* system and LS bus module.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_ Get_Output_Status, LS_Reset, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example

REM Example process for one module HSM-24V and ADwin-X **#Include** ADwin-X.inc

Init:

```
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 0Fh)
```

Event:

```
REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)
```


LS_Watchdog_Reset resets the watchdog counters of all modules on the LS bus to the appropriate start value. The counters remain enabled.

Syntax

#Include ADwin-X.Inc

```
LS_WATCHDOG_RESET()
```

Parameters

- / -

Notes

As long as a watchdog counter is enabled, it decrements the counter value continuously. After the set release time the counter value reaches 0 (zero). If so, the module assumes a malfunction and stops; thus, all output signals are reset.

Reset the active watchdog timer at least once to the start value within the counting interval, in order to keep the module working. To reset the module you may also use any module specific instruction.

The watchdog function is used as to monitor the connection between *ADwin* system and LS bus module.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_ Get_Output_Status, LS_Reset, LS_Watchdog_Init

Valid for

HSM-24V + X-A20

Example

```
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc
```

```
Init:
```

```
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1...32 as outputs
Par_3 = LS_Digprog(1, 01111b)
```

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1...32 as inputs
Par 13 = LS Digprog(3, 0h)

Event:

REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, PAR_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
LS Watchdog Reset()

LS_Watchdog_ Reset

A.1 Technical Data

General Data/Limit Valu	es						
	Symbol	Conditions		min.	typ.	max.	Unit
Supply Voltage/Supply (Current					<u>.</u>	
Voltage	U _b			10	12	28	V
Idle current	I _{idle}			0.6	0.8	1.5	А
Power-up current	I _{power-on}				3.0		
Valid operation ranges							
Temperature	T _{environment}			+5		+50	°C
	T _{chassis}			+5		+55	
Relative humidity	F _{rel}	no condensation		0		80	%
Storage							
Temperature	Т			-20		+70	°C
Humidity	R _H	no condensation or aggressive atmosphere					
Dimensions		-			•		
Width x height x depth	WxHxD			215 x 125 x 47			mm
		Variant -R	Variant -R		42 HP x 3 U 213,5 x 129 x 29,5		
Net weight							
Weight	m _{Net}				760		g
		Variant -R			580		g
Connectors		-					
DSUB connectors	Metric ISO thr	eads; UNC threads a	vailable a	s orderin	g option		
Installation							
optional	DNI rail mount	ting and wall mounting	g				
Processor T12.1							
Parameter	Symbol	Conditions	min.	t	yp.	max.	Unit
Туре	ZYNQ™ with	 Dual-Core ARM Corte	ex-A9	I	I		
Manufacturer	XILINX						
Clock frequency	f _{CLK}			6	66		MHz
Register width		Floating point Integer			64 32		Bit
Memory	DRAM				1		GByte

<u>ADwin</u>

Basic version						
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Analog Inputs (ADC 18-b	pit)					
Number	8, differential. Version M1: 0	Conversion via multiple	xer, Version	F: Conversi	on synchrond	ously.
Input voltage	U _{out}	Version M1/F, k _V =1	-10		+9.999695	V
		Version F, k _V =2	-5		+4.999847	V
Input resistance	R _i		323.4	330	336.6	kΩ
Overvoltage	U _{in max.}	ON & OFF			±35	V
Conversion time	t _{Conv}	Version M1		5		μs
		Version F, refers to number of channels	1.25		5	μs
Integral non-linearity	INL	k _V =1		±1	±3.5	LSB
Differential non-linearity	DNL			±0.2	±0.9	
Outputs: DAC 16-bit						
Number	2					
Output voltage	U _{out}		-10		+9.999695	V
Update time	t _{update}			1		μs
Settling time	t _{settle}	2V jump		2		μs
		FSR ^a (20V)		4		
Permissible current					±5	mA
Integral non-linearity	INL				±2	LSB
Differential non-linearity	DNL				±1	
Offset	Error	Adjustable with ADte	est.exe	•	4	
Gain	Error	Adjustable with ADte	est.exe			
Outputs: DAC 12-bit						
Number	2					
Output voltage	U _{out}		-10		+9.995117	V
Update time	t _{update}		500		1000	μs
Permissible current					±5	mA
Integral non-linearity	INL				±2	LSB
Differential non-linearity	DNL				±1	1
Offset	Error	Adjustable with ADte	est.exe			
Gain	Error	Adjustable with ADte	est.exe			
Digital Inputs/Outputs		• •				
Number	DIO39:32	8 (TTL level), progra	ammable as	inputs / outp	outs in groups	s of 4
	EVENT (Digin 62)	1 ext. trigger input				
Circuitry see "Circuitry of	f digital inputs /	outputs", TTL inputs/o	utputs, Eve	nt input, pag	e A-4	
LS bus						
	1 serial interfa	ace for up to 15 LS bus	modules.			
^a Full Scale Range	1	-				

^a Full Scale Range

Option CO1							
Parameter	Symbol	Conditions	min.	typ.	max.	Unit	
Counter			1		1		
Number and function	edge evaluation	(in-/decremental cou n) and PWM counter evel, double assignm	(pulse widt			tion or four	
	Properties see	"Counter", page A-5					
Option D							
Parameter	Symbol	Conditions	min.	typ.	max.	Unit	
Digital Inputs/Outputs							
Number	DIO41:DIO40	2 programmable inp	outs or outp	uts, differenti	al		
	DIGIN47: DIGIN42	6 inputs, differential, double assignment.					
	DIGIN60	DIGIN60 1 input, differential, double assignment.					
Circuitry see "Circuitry o	f digital inputs / c	outputs", differential, p	page <mark>A-4</mark>				
Counter							
Number and function	2 counter blocks in-/decremental counter (event counter with clock/direction or fou edge evaluation) and PWM counter (pulse width measurement). Pins differential, double assignment.					tion or four	
	Properties see	"Counter", page A-5					
Interfaces	-1						
SSI	1 SSI decoder,	pins differential, dou	ble assignn	nent.			
Option DCT							
Parameter	Symbol	Conditions	min.	typ.	max.	Unit	
Digital Inputs/Outputs	, , , , , , , , , , , , , , , , , , ,		1		1		
Number	DIO41:DIO40	2 programmable inp	outs or outp	uts, differenti	al		
	DIGIN47: DIGIN42	6 inputs, differential	, double as	signment.			
	DIGIN60	1 input, differential,	double assi	ignment.			
	DIO31:DIO00	32 inputs or outputs in groups of 8, DIO3				ts / outputs	
	DIGIN55: DIGIN48	8 inputs, comparato	r levels set	with DAC12-	1, double a	ssignment.	
	DIGIN59: DIGIN55	4 inputs, comparato	or levels set	with DAC12-	2.		
Circuitry see "Circuitry o	f digital inputs / c	outputs", TTL inputs/c	outputs, diffe	erential, page	e A-4		
Counter							
Number and function	2 counter block	s, inputs differential, s, inputs with TTL lev ounter blocks, inputs	vels, double	assignment			
		lock with in-/decreme aluation) and PWM c		•			
	Properties see "Counter", page A-5						
	Properties see	Counter, page A-5					
Interfaces	Properties see	Counter, page A-5					

Option COM							
Interfaces							
CAN	CAN High sp	AN High speed, 2 interfaces					
RS232	32 RS232, 1 interface						
Option Profinet	•						
Interfaces							
Profinet	Profinet, 1 int	terface					
Option Profibus-IRT							
Interfaces							
Profibus-IRT	Profibus-IRT,	1 interface					
	2 plugs RJ-4	5 (copper) or 2 duplex p	lugs SC-RJ	(fiber optics	S)		
Option EtherCat							
Interfaces						_	
EtherCat	EtherCat, 1 ir	nterface					
Circuitry of digital inpu	ts / outputs						
Parameter	Symbol	Conditions	min.	typ.	max.	Unit	
EVENT input					<u> </u>		
Edge detection, pos.	V _{T+} (Low)	V _{CC} = 5V	1.65	1.9	2.15	V	
Edge detection, neg.	V _{T-} (High)	V _{CC} = 5V	0.75	1.0	1.25		
Switching hysteresis	V _{T+} - V _{T-}		0.4	0.9			
Input current	I _{IH}	V _I = 2.7V			20	μA	
	IIL	V _I = 0.4V			-50		
TTL inputs							
Input voltage			-0.5		+6.0	V	
Logic	V _{IH} (High)	V _{CC} = 5V	3.5				
input voltage	V _{IL} (Low)	$V_{CC} = 5V$			1.5		
Logic input current	lı	$10 k\Omega$ Pull-down					
Comparator inputs					-	-	
Input voltage			-0.1		+30	V	
Logic switching treshold	V _{IH} (High)	U _{out DAC12} + 0,4V	0.45				
	V _{IL} (Low)	U _{out DAC12} - 0,4V			04.6		
Switching hysteresis	V _{IH} - V _{IL}	depends on	±30		±70	mV	
max. measurement	f	U _{out DAC12} depends on	10	30	200	kHz	
frequency		$U_{out DAC12}$ and V_{I}		00	200	1112	
Logic input current	I _I	14,7kΩ Pull-up (to +	5V)		•		
Differential channels DIC	41:DIO40					·	
Differential input thresh- old voltage	V _{TH}	$-7V \le V_{CM} \le 12V$	-300		+300	mV	
Input hysteresis	ΔV_{TH}	$-7V \le V_{CM} \le 12V$		25		mV	
Range of common mode voltage	V _{CM}		-7		+12	V	
Differential output voltage	V _{OD1}		1.5		5	V	

Circuitry of digital input	ts / outputs					
Differential inputs DIGIN4	17:DIGIN42					
Differential input thresh- old voltage	V _{TH}	-10V ≤ V _{CM} ≤ 13.2V	-200		+200	mV
Input hysteresis	ΔV_{TH}	-10V ≤ V _{CM} ≤ 13.2V		40		mV
Range of common mode voltage	V _{CM}		-10		+13.2	V
Differential slew rate			0.33			V/µs
Permissible differential input voltage		for each input			±3.9	V
Bus termination				120		Ω
TTL outputs						
Logic	V _{OH} (High)	I _{OH} = -32mA	3.8			V
output voltage	V _{OL} (Low)	I _{OL} = +32mA, V _{CC} = 4.5V			0.55	
Logic output current	I _O	je DIO-Leitung			±32	mA
	I _{TOTAL}	je DIO-Gruppe (8) über V _{CC} / GND			±100	
Counter						
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Reference oscillator						
Reference frequency	f _{ref}			33,3		MHz
Accuracy and Drift					±50	ppm
	Counter block	with			±50	ppm
-	 up/down co event coun 	unter for measurement ting with clock / direction	on or four-e	dge-evaluati	d pause wic on.	
Accuracy and Drift Function Counter inputs	 up/down co event coun PWM coun 	unter for measurement ting with clock / direction ter with internal clock f	on or four-eo or pulse wic	dge-evaluati Ith evaluatio	d pause wic on.	
Function	 up/down co event coun PWM coun Each counter I 	unter for measurement ting with clock / direction ter with internal clock for mas 3 inputs (A/CLK, B	on or four-eo or pulse wic /DIR, CLR/I	dge-evaluati Ith evaluatio _ATCH).	d pause wic on.	
Function Counter inputs	 up/down co event coun PWM coun Each counter I 	unter for measurement ting with clock / direction ter with internal clock f	on or four-eo or pulse wic /DIR, CLR/I	dge-evaluati Ith evaluatio _ATCH). puts"	d pause wic on.	ith and
Function Counter inputs Counter resolution	 up/down co event coun PWM coun Each counter I Input circuitry s 	unter for measurement ting with clock / direction ter with internal clock for has 3 inputs (A/CLK, B see "Circuitry of digital	on or four-eo or pulse wic /DIR, CLR/I	dge-evaluati Ith evaluatio _ATCH). puts" 32	d pause wic on.	Bit
Function Counter inputs Counter resolution Count frequency	 up/down co event coun PWM coun Each counter I 	unter for measurement ting with clock / direction ter with internal clock for has 3 inputs (A/CLK, B see "Circuitry of digital Input CLK	on or four-eo or pulse wic /DIR, CLR/I	dge-evaluati Ith evaluatio _ATCH). puts"	d pause wic on.	ith and
Function Counter inputs Counter resolution Count frequency counter 15	 up/down co event coun PWM coun Each counter I Input circuitry s f_{CLK} 	unter for measurement ting with clock / direction ter with internal clock for has 3 inputs (A/CLK, B see "Circuitry of digital Input CLK Input A/B	on or four-eo or pulse wic /DIR, CLR/I	dge-evaluati Ith evaluatio _ATCH). puts" 32 20 5	d pause wic on.	Bit MHz
Function Counter inputs Counter resolution Count frequency	 up/down co event coun PWM coun Each counter I Input circuitry s 	unter for measurement ting with clock / direction ter with internal clock for has 3 inputs (A/CLK, B see "Circuitry of digital Input CLK	on or four-eo or pulse wic /DIR, CLR/I	dge-evaluati Ith evaluatio _ATCH). puts" 32 20	d pause wic on.	Bit

A.2 Hardware revisions

The revision is marked on the bottom of the casing. The differences of the revision status' are shown below.

Revision	First release	Changes to previous revision status
A	1 / 2019	First release.

A.3 RoHS Declaration of Conformity

The RoHS directive 2011/65/EU of the European Union on the restriction of the use of certain hazardous substances in electrical und electronic equipment (RoHS directive) has become operative as from 3rd January, 2013.

The following substances are involved:

- Lead (Pb)
- Cadmium (Cd)
- Hexavalent chromium (Cr VI)
- Polybrominated biphenyls (PBB)
- Polybrominated diphenyl ethers (PBDE)
- Mercury (Hg)
- Bis(2-ethylhexyl) phthalate (DEHP)
- Benzyl butyl phthalate (BBP)
- Dibutyl phthalate (DBP)
- Diisobutyl phthalate (DIBP)

The product line ADwin-X-A20 complies with the requirements of the RoHS directive in all delivered variants.