
ADwin-X-A20
Manual

ADwin-X-A20, Manual Sep. 2019

ADwin-X-A20, Manual Sep. 2019

For any questions, please don’t hesitate to contact us:

Hotline: +49 6251 96320

Fax: +49 6251 5 68 19

E-Mail: info@ADwin.de

Internet www.ADwin.de

Jäger Com-
putergesteuerte
Messtechnik GmbH
Rheinstraße 2-4
D-64653 Lorsch
Germany

ADwin-X-A20, Manual Sep. 2019 III

Table of ContentsADwin
Table of Contents

 Table of Contents . III

1 Typografische Konventionen .V

1 Information about this Manual . 1

2 System description . 2
2.1 ADwin system concept. 2
2.2 ADwin-X-A20 . 3

3 Operating Environment . 7

4 Initialization of the Hardware . 8

5 Overview Inputs and Outputs . 9

6 X-A20 Basic . 11
6.1 Multi-color LED. 11
6.2 Analog inputs, 18-bit . 11
6.3 Analog outputs, 12-bit . 14
6.4 Analog outputs, 16-bit . 14
6.5 TTL digital channels DIO39:DIO32 . 15
6.6 Event Input . 15
6.7 LS-Bus . 16
6.8 Synchronous Actions . 16

7 Option CO1 . 17

8 Option D . 18
8.1 Diff. digital channels DIO47:DIO40 . 18
8.2 Diff. counters 4, 5 . 18
8.3 SSI interface. 19

9 Option DCT . 21
9.1 TTL-digital channels DIO31:DIO00 . 21
9.2 Comparator inputs DIO59:DIO48. 21
9.3 Edge control and Edge output . 22
9.4 TTL Counters 2, 3 . 22
9.5 Comparator Counters 6, 7 . 23

10 Option COM . 24
10.1 CAN interfaces . 24
10.2 RS232 interface . 25

Table of Contents ADwin

IV ADwin-X-A20, Manual Sep. 2019

11 Option Profibus . 27

12 Option Profinet-IRT . 30

13 Option EtherCAT . 34

14 Option Boot . 37

15 Counter block . 38
15.1 Evaluation of the Counter Contents . 40
15.2 Using Event Counter . 41
15.3 Using PWM Counter . 43

16 Software . 45
16.1 General instructions . 46
16.2 Analog Inputs and Outputs. 53
16.3 Digital Inputs and Outputs . 77
16.4 Counter . 110
16.5 SSI interface. 127
16.6 CAN interface. 135
16.7 RSxxx Interface . 146
16.8 Profibus interface . 152
16.9 Profinet interface . 156
16.10 EtherCAT interface. 159

 Annex . A-1

A.1 Technical Data. A-1

A.2 Hardware revisions . A-6

A.3 RoHS Declaration of Conformity . A-6

ADlab Treiber für MATLAB, Handbuch Sep. 2019 V

ADwin
1 Typografische Konventionen
Das „Achtung“-Zeichen steht bei Informationen, die auf Folgeschäden durch Fehlbe-
dienung an der Hard- oder Software, am Messaufbau oder an Personen hinweisen.

Einen „Hinweis“ finden Sie bei

– Informationen, die für einen fehlerfreien Betrieb unbedingt beachtet werden
müssen.

– Tipps und Ratschlägen für einen effizienten Betrieb.

Das Zeichen „Information“ verweist auf weiterführende Informationen in dieser Doku-
mentation oder andere Quellen wie Handbücher, Datenblätter, Literatur etc.

C:\ADwin\…Dateinamen und -verzeichnisse sind in spitzen Klammern und im Schrifttyp Courier
New angeben.

ProgrammtextProgrammanweisungen und Benutzer-Eingaben sind durch den Schrifttyp Courier New
gekennzeichnet.

Var_1Elemente eines Quelltextes wie Befehle, Variablen, Kommentar und sonstiger Text wer-
den im Schrifttyp Courier New und farbig dargestellt.

In einem Datenwort (hier: 16 Bit) werden die Bits wie folgt nummeriert:

Bit-Nr. 15 14 13 … 1 0

Wert des Bits 215 214 213 … 21=2 20=1

Bezeichnung MSB - - - - LSB

Typografische Konventionen ADwin

VI ADlab Treiber für MATLAB, Handbuch Sep. 2019

ADwin-X-A20, Manual Sep. 2019 1

Information about this ManualADwin
1 Information about this Manual
This manual contains complex information about the operation of the ADwin-X-A20 sys-
tem. Additional information are available in

– the manual "ADwin Installation", which describes all interface installations for
the ADwin systems.
With this manual, you begin your installation!

– the description of the configuration program ADconfig, with which you initialize
the communication from the corresponding interface to your ADwin-X-A20 sys-
tem.

– the manual ADbasic, which explains basic instructions for the compiler ADbasic
and the functional layout of the ADwin system.

The online help of ADbasic contains the same information.

– the manuals for all current development environments containing the description
of installation and instructions.

– installation and instruction manuals for drivers of all popular development envi-
ronments

– the manual "ADwin HSM-24V" which describes a module for the LS bus.

Please note: This manual is still in progress, errors can be contained.

Please note:

For ADwin systems to function correctly, follow strictly the information provided in this
documentation and in other mentioned manuals.

Qualified personnelProgramming, start-up and operation, as well as the modification of program parame-
ters must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience and
training as well as their knowledge of applicable technical standards, guidelines,
accident prevention regulations and operating conditions, have been authorized
by a quality assurance representative at the site to perform the necessary aciv-
ities, while recognizing and avoiding any possible dangers.
(Definition of qualified personnel as per VDE 105 and ICE 364).

Availability of the documentsThis product documentation and all documents referred to, have always to be available
and to be strictly observed. For damages caused by disregarding the information in this
documentation or in all other additional documentations, no liability is assumed by the
company Jäger Computergesteuerte Messtechnik GmbH, Lorsch, Germany.

Legal informationThis documentation, including all pictures is protected by copyright. Reproduction,
translation as well as electronical and photographical archiving and modification require
a written permission by the company Jäger Computergesteuerte Messtechnik GmbH,
Lorsch, Germany.

OEM products are mentioned without referring to possible patent rights, the existence
of which may not be excluded.

Subject to change.
Hotline address: see inner side of cover page.

System description ADwin

2 ADwin-X-A20, Manual Sep. 2019

2 System description

2.1 ADwin system concept
ADwin systems guarantee fast and accurate operation of measurement data acquisi-
tion and automation tasks under real-time conditions. This offers an ideal basis for appli-
cations such as:

– very fast digital closed-loop control systems

– very fast open-loop control systems

– data acquisition with very fast online analysis of the measurement data

– monitoring of complex trigger conditions and many more

ADwin systems are optimized for processes, which need very short process cycle
times of one millisecond down to some microseconds.

System features The ADwin system is equipped with analog and digital inputs and outputs, a fast pro-
cessor (32-bit or 64-bit floating-point signal processor) and local memory. The proces-
sor is responsible for the whole real-time processing in the system. The applications run
independent of the PC and its workload.

Processor The processor of the ADwin system processes each measurement value at once.

In one cycle, you can acquire the status of the inputs, process the status with the help
of any mathematical functions, and react to the results, even at very fast process cycle
times of some microseconds. This results in a perfect and logical work sharing: The PC
executes a program for visualizing of data, for input and operation of the processes,
togeher with access to networks and data bases, while the processor of the ADwin sys-
tem executes all tasks, which require real-time processing concurrently.

Real-time operating system The operating system for the DSP of the ADwin system has been optimized to achieve
the fastest response times possible. It manages parallel processes in a multitasking
environment. Low priority processes are managed by time slicing. Specified high prior-
ity processes interrupt all low priority processes and are immediately and completely
executed (preemptive multitasking). High priority processes are executed as time-con-
trolled or event-controlled processes (external trigger).

Timing The built-in timer is responsible for the precise scheduling of high priority processes. It
has a resolution of 25 nanoseconds (3,3ns since processor T11). The ADwin systems
are characterized by an extremely short response time of only 300 nanoseconds during
the change from a low to a high priority process. A continuously running communication
process enables a continuous data exchange between the ADwin system and the PC
even while applications are active. The communication has no influence on the real-
time capability of the ADwin system, even so, it is possible to exchange data at any
time.

ADbasic The real-time development tool ADbasic gives the opportunity to create time-critical
programs for ADwin systems very easily and quickly. ADbasic is an integrated devel-
opment environment under Windows with possibilities of online debugging. The famil-
iar, easy-to-learn BASIC instruction syntax has been extended by many more functions,
in order to allow direct access to inputs and outputs as well as by functions for process
control and communication with the PC.

ADwin-X-A20, Manual Sep. 2019 3

System descriptionADwin
Communication between ADwin system and PC

InterfacesThe ADwin system is connected to the PC via an USB or Ethernet interface. After
power-up the ADwin system is booted from the PC via this interface. Afterwards the
ADwin operating system is waiting for instructions from the PC, which it will process.

Instruction processingThere are two kinds of instructions: On the one hand instructions, which transfer data
from the PC to the ADwin system, for instance "load process", "start process" or "set
parameter", on the other hand instructions, which wait for a response from the ADwin
system, for instance "read variables" or "read data sets". Both kinds of instructions are
processed immediately by the ADwin system, which means immediate and complete
responses. The ADwin system never sends data to the PC without request! The data
transfer to the PC is always a response to an instruction coming from the PC. Thus,
embedding the ADwin system into various programming languages and standard soft-
ware packages for measurements is held simple, because they have only to be able to
call functions and process the return value.

Software interfacesUnder Windows 95/98/NT/ME/2000/XP/Vista, you can use a DLL and an ActiveX inter-
face. On this basis the following drivers for development environments are available:
.NET, Visual Basic, Visual-C, C/C++, Delphi, VBA (Excel, Access, Word), TestPoint,
LabVIEW / LabWINDOWS, Agilent VEE (HP-VEE), InTouch, DIAdem, DASYLab,
SciLab, MATLAB.

Versions for Linux, Mac OS and Java are available, too.

The simple, instruction-oriented communication with the ADwin system enables sev-
eral Windows programs to access the same ADwin system in coordination at the same
time. This is of course a great advantage when programs are being developed and
installed.

Fig. 1 – Concept of the ADwin systems

2.2 ADwin-X-A20

Prozessor und SpeicherADwin-X-A20 is euqipped with the digital signal processor XILINX ZYNQ™ with Dual-
Core ARM Cortex-A9 (666MHz), which processes 64 bit float and 32 bit integer. It is
responsible for the complete measurement data acquisition, online processing, and sig-
nal output, and makes it possible to instantaneously process sample rates in the range
of 200 Kilohertz to 1 Megahertz.

System description ADwin

4 ADwin-X-A20, Manual Sep. 2019

The memory 1 GiB is large enough for all tasks and even bulk data. An integrated
cache memory allows very short access time and holds the complete ADwin operating
system, ADbasic processes and all variables.

In order to get maximum access times, all inputs and outputs are memory-mapped in
the external memory section of the DSP.

The number and function of inputs and outputs differ according to the selected variant
of X-A20. The following text describes all available functions.

Analog inputs The system has 8 analog inputs (differential) on a DSub connectors. The input signals
are converted by a 18-bit analog-to-digital converter (ADC), see Fig. 2 "Block diagram".
According to the ADwin-X version, the sampling sequence converts the digital value of
one channel (X-A20-M1) or of up to 8 channels synchronously (X-A20-F) .

Fig. 2 – Block diagram

Analog outputs ADwin-X-A20 is equipped with 2 analog outputs of 16-bit resolution with an output
voltage range of -10V … +10V. You can synchronize the voltage output of all DACs via
software. The output signal is smoothed by a low-pass filter with a cut-off frequency of
fg = 700 kHz.

There are also 2 analog outputs with 12-bit resolution, conversion rate 1ms. The
output signals are internally used for comparator inputs and counters.

ENET

EVENT IN
DIGIN 62

DIGIN 47:42
CNTR4/5 = DIO 47:42 6 diff. D-IN / CNTR

2 diff. D-I/ODIO 41:40

Profibus

Profinet

-IRT

EtherCAT

D

A

16 bit

OUT 1

OP
+

-

D

A

16 bit

OUT 2

OP
+

-

CAN

RS-232

CAN1

CAN2

RS232

Option DCT

Option COM

Option DCT

Option D (inkl. in DCT)

D
IO

 0
0

-1
5

D
IO

 1
6

-3
1

DIO 31:00

DIO 07:00

DIO 15:08

DIO 23:16

DIO 31:24
CNTR2/3 = DIO 31:26

D

A

12 bit

OUT 3

OP
+

-

D

A

12 bit

OUT 4

OP
+

-

DIGIN 55:48
CNTR6/7 = DIO 53:48

+

- 8 CMP-IN / CNTR

Bus

LS1 LS-Bus

Bootloader
T12.1

XILINX ZYNQ™
Dual-Core ARM Cortex-A9

@ 666 MHz
1 GiByte RAM

DIGIN 59:56
+

- 4 CMP-IN

SSI (SSI decoder) DIGIN 60 1 diff. D-IN / SSI

Option Boot

4 TTL D-I/O / CNTR
DIO 35:32

DIO 39:36 4 TTL D-I/O

CNTR1 = DIO 34:32

Option CO1

Option COM

nur
X-A20F

nur
X-A20M1

18 bit

A

D

PGA

G = 1, 2

+

-

+IN 1

IN 8

.
.
.

MUX

Option Bus

Pr / Pr et IRT / EtherCAT

ADwin-X-A20, Manual Sep. 2019 5

System descriptionADwin
Digital inputs and outputs32 digital inputs or outputs are available on D-Sub connectors. They can be pro-

grammed in groups of 8 as inputs or outputs. The inputs or outputs are TTL-compatible.

D-Sub connectors provide a range of 8 to 61 digital inputs and outputs, according to
the ADwin-X version. Generally, the digital channels are TTL-compatible, but there are
also 8 differential channels and 8 comparator inputs. Most channels can be pro-
grammed in groups as inputs or outputs, but some are already fixed. Partly, digital chan-
nels have double allocation and are also used as counter inputs.

Using a FIFO, an edge control of digital inputs is available. With digital outputs, FIFOs
allow to output edges at specified points in time.

CountersThere are overall 7 counter blocks with 32-bit; a counter block provides one up/down
counter and one PWM counter. Counter blocks are equal in function but can process
different inputs signals: TTL-like signals, differential signal, comparator signals.

Trigger input (EVENT)ADwin-X-A20 has a trigger input (EVENT, see also page 15). Processes can be trig-
gered by a signal and are completely processed afterwards. (see ADbasic manual,
chapter "Processes in the ADbasic System").

24 Volt signalsUsing the LS bus interface (see page 16), up to 15 LS bus modules can be addressed.
The LS bus module HSM-24V provides 32 digital channels for 24 Volt signals.

SchnittstellenThere are interfaces for CAN (High Speed), RS232, SSI, Profibus, Profinet-IRT, and
EtherCAT. More interfaces are available on request.

BootloaderThe Bootloader starts a previously programmed application automatically after power-
up. After installation of this application, an operation without computer is possible.

Standard deliveryThe standard delivery items for ADwin-X-A20:

– Hardware ADwin-X-A20 (Design and Functions as ordered).

– Cross-over Ethernet cable, length 1.8 meters.

– Three-pole power supply cable with one power supply plug, length 1.0 meters.

The open cable end is used for connection to the external power supply (self-as-
sembly); see appendix for power supply characteristics.

– ADwin software package.

– Manual "Driver Installation".

– This manual.

2.2.1 Design

ADwin-X-A20 is available in the following designs:

– Standard: Metal enclosure as desktop unit.

– A20-R: Metal enclosure for installation in 19“ racks. All +Bus options (PROFI-
BUS, PROFINET, ECAT, see below) are not available.

System description ADwin

6 ADwin-X-A20, Manual Sep. 2019

2.2.2 Functions

ADwin-X-A20 as basic version is available as X-A20-M1 or X-A20-F. The basic version
can be combined with any of several opptions.

Option DCT is expansion of option D, so these two options cannot be combined.

Options PROFIBUS, PROFINET, and ECAT cannot be combined.

2.2.3 Accessories

For ADwin-X-A20, the supplementary accessories are availabe:

– ADbasic, real-time development tool for all ADwin systems.

– A20-Mount: A20 mount: Housing for DIN rail mounting in a switch cabinet with
insulated clips.

– A20-Pow: external power supply.

– A20-Pow-Mount: external power supply for DIN rails.

– HSM-24V: DIN rail module for LS bus interface, 32 digital I/Os, 24V level, con-
figurable in groups of 8, screw terminals.

Options Functions Page

X-A20 Basic 8 analog inputs, 18-bit
2 analog outputs, 16-bit
2 analog outputs, 12-bit

8 TTL digital channels
1 Event input

1 LS bus interface

page 11

page 11

page 16

M1 Analog inputs with multiplexer: 1 measurement
value per conversion, 200kHz.

F Analog input, fast: up to 8 measurement values
converted synchronously, 200kHz…800kHz;
gain selectable.

+CO1 1 TTL counter block: 32-bit up/down counter and
PWM counter

page 17

+DCT
(inklusive D)W

32 TTL digital channels

12 comparator inputs

2 TTL counter blocks: 32-bit up/down counter
and PWM counter

2 comparator counter blocks: 32-bit up/down
counter and PWM counter

Input FIFO and output FIFO for digital channels

page 21

+D 6 diff. digital inputs + 2 diff. digital channels

2 differential counter blocks: 32-bit up/down
counter and PWM counter

1 SSI interface

page 18

+COM 2 CAN interfaces (high speed)

1 RS232 interface

page 24

+Bus +PROFI-
BUS

1 Profibus interface (Slave) page 27

+PROFI-
NET

1 Profinet-IRT interface (Slave) page 30

+ECAT 1 EtherCAT-Schnittstelle (Slave) page 34

+Boot Flash EPROM bootloader for independent pro-
cessing without PC

page 37

ADwin-X-A20, Manual Sep. 2019 7

Operating EnvironmentADwin
3 Operating Environment
With the necessary accessories, the system can be operated in 19-inch-enclosures or
as a mobile system (e.g. in cars).

The ADwin-X-A20 device must be earth-protected, in order to

– build a ground reference point for the electronic

– conduct interferences to earth.

Connect the GND plug, which is internally connected with the ground reference point
and the enclosure, via a short low-impedance solid-type cable to the central earth con-
nection point of your device.

Galvanic connectionThe data lines at the version with Ethernet interface are optically isolated, but the
ground potentials are connected, because the shielding of the Ethernet connector (RJ-
45) is connected to GND.

Excluding transient currentsTransient currents, which are conducted via the aluminum enclosure or the shielding,
have an influence on the measurement signal.
Please, make sure that the shielding is not reduced, for instance by taking measures
for bleeding off interferences, such as connecting the shielding to the enclosure just
before entering it. The more frequently you earth the shielding on its way to the machine
the better the shielding will be.

Use cables with shielding on both ends for signal lines. Here too, you should reduce the
bleeding off of interferences via the enclosure by using screen clips.

Protection low voltageThe ADwin-X-A20 is externally operated with a protection low voltage of 10V to 35V;
internally it is operated with a voltage of +5V and ±15V against GND. It is not life-threat-
ening. For operation with an external power supply, the instructions of the manufacturer
applies.

Ambient temperatureThe ADwin-X-A20 is designed for operation in dry rooms with a room temperature of
+5°C … +50°C and a relative humidity of 0 … 80% (no condensation, see Annex).

Chassis temperatureThe temperature of the chassis (surface) must not exceed +60°C, even under extreme
operating conditions – e.g. in an enclosure or if the system is exposed to the sun for a
longer period of time. You risk damages at the device or not-defined data (values) are
output, which can cause damages at your measurement device under unfavorable cir-
cumstances.

Initialization of the Hardware ADwin

8 ADwin-X-A20, Manual Sep. 2019

4 Initialization of the Hardware
If you start initializing do not connect any cables to the ADwin-X-A20 before you have
executed the following steps:

1. Software installation / installation in PC or 19" enlosure

Follow the manual "ADwin Driver Installation".

2. Set the operating environment, see chapter 3.

3. Read chapter 5 “Overview Inputs and Outputs“ in this manual.

4. Begin now with the connection of the inputs and outputs.

Notes

Providing the power supply Please pay attention that reliable power source is supplied.
This concerns the computer (standard delivery). Otherwise also the external power
supply, if operated in a car, the battery voltage.

If using current-limiting power supplies, please pay attention to the fact, that after
power-up the current demand can be a multiple of the idle current. More detailed infor-
mation can be found in the Technical Data (Annex).

In case of a power failure, all data, which have not been saved are lost. Not-defined data
(values) can under unfavorable circumstances cause damages to other equipment.

Avoid direct contact to uninsulated parts to be secure of electrostatic charging.

Checking the Connection

Booting Start ADbasic and boot the ADwin system by clicking on the boot button .

The flashing LED1 (green colored) of the system and the display in the ADbasic status
line: "ADwin is booted" show that the operating system has been loaded and ADbasic
can connect the ADwin system. (If not, please check the connectors first).

Programs with ADbasic Programming the ADwin systems is described more detailed in the ADbasic manual.
Instructions for access to ADwin-X-A20 I/Os are described in chapter 16 on page 45.

Start with the programming examples in the ADbasic Tutorial.

ADwin-X-A20, Manual Sep. 2019 9

Overview Inputs and OutputsADwin
5 Overview Inputs and Outputs
ADwin-X-A20 provides the following inputs and outputs (Pin assignment see next
page). According to the built-in optionsm, only some of the pins may be used.

– Ethernet connector

– Power supply connector

– GND connector

– 3 D-Sub sockets, 37-pole: Conn. 1, Conn. 2, Conn. 3
• analog inputs, analog outputs
• digital inputs and outputs: TTL, differential, comparator
• inputs for counters: TTL, differential, comparator
• SSI interface
• digital trigger input (Event)
• power output +5V

Some pins have double assignments.

– 2 D-Sub plugs 9-pole, CAN1, CAN2

– 1 D-Sub plug 9-pole, RS232

– 1 D-Sub socket 9-pole, LS-BUS

All inputs and outputs may only be operated according to the specifications given (see
Annex A.1 Technical Data). In case of doubt, ask the manufacturer of the device, to
which you want to connect ADwin-X-A20.

Open-ended inputs can cause errors - above all in an environment where interferences
may occur. For your safety, set the inputs, which you do not use to a specified level (for
instance GND) and also connect them as close to the connector as possible. Don't con-
nect open ended cables to the inputs; open ended cables may cause spikes at the
inputs.
The event input is an exception, it has an internal pull-up resistor (4.7 kΩ).

Fig. 3 – Connectors of ADwin-X-A20

1 1 1

Conn. 3Conn. 2Conn. 1
GND

LS-BUS

1 1

1 1

CAN 1

CAN 2 RS232

ENET

PWR

LED2LED1 LED3

ADwin-X-A20

Overview Inputs and Outputs ADwin

10 ADwin-X-A20, Manual Sep. 2019

Conn. 1 Conn.2

Conn. 3

Fig. 4 – Pin assignment analog/digital (sockets)

Pin assignment CAN1, CAN2 Pin assignment LS-BUS (socket)

Power supply (plug) Pin assignment RS232

Fig. 5 – Pin assignments interfaces, power supply

AIN 01 (+)
AIN 02 (+)
AIN 03 (+)
AIN 04 (+)
AIN 05 (+)
AIN 06 (+)
AIN 07 (+)
AIN 08 (+)
AGND
AGND
AGND
AGND
AGND
DIO 32 / A CNTR 1
DIO 34 / C CNTR 1
DIO 36
DIO 38
+5Vout <0,1A
DGND

AIN 01 (-)
AIN 02 (-)
AIN 03 (-)
AIN 04 (-)
AIN 05 (-)
AIN 06 (-)
AIN 07 (-)
AIN 08 (-)

DAC 1 (+)
DAC 2 (+)
DAC (+)
DAC (+)

AGND
DIO33 / B CNTR 1

DIO 35
DIO 37
DIO 39
DGND

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

DIGIN42 (-) / 4 (-)

DIGIN43 (-) / CNT4 (-)

DIGIN44 (-) / CNT4 (-

DIGIN45 (-) / CNT5 (-)

DIGIN46 (-) / CNT5 (-)

DIGIN47 (-) / CNT5 (-

DIGIN48 CMP / CNT6

DIGIN50 CMP CNT6

DIGIN52 CMP / CNT7

DIGIN54 CMP

DIGIN56 CMP

DIGIN58 CMP

DIO40 (+)

DIO41 (+)

DGND

SSI CLK (+)

SSI DATA (+) / DIGIN60 (+)

+5Vout <0,1A

DGND

DIGIN42 (+)

DIGIN43 (+)

DIGIN44 (+)

DIGIN45 (+)

DIGIN46 (+)

DIGIN47 (+)

DIGIN49 MP

1 CMP

DIGIN53 CMP

DIGIN55 CMP

DIGIN57 CMP

DIGIN59 CMP

DIO40 (-)

DIO41 (-)

DGND

SSI CLK (-)

DIGIN60 (-) / SSI DATA (-)

DGND

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

DIO00
DIO02
DIO04
DIO06
DIO08
DIO10
DIO12
DIO14
DIO16
DIO18
DIO20
DIO22
DIO24
DIO26 / A CNTR 2
DIO28 / C CNTR 2
DIO30 / B CNTR 3
DGND
+5Vout <0,1A
DGND

DIO01
DIO03
DIO05
DIO07
DIO09
DIO11
DIO13
DIO15
DIO17
DIO19
DIO21
DIO23
DIO25

DIO27 / B CNTR 2
DIO29 / A CNTR 3
DIO31 / C CNTR 3

DGND
EVENT IN

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5

6 7 8 9

re
se

rv
ed

C
A

N
(–

)
C

A
N

-G
N

D
re

se
rv

ed
re

se
rv

ed

C
A

N
-G

N
D

(+
)

C
A

N
re

se
rv

ed
re

se
rv

ed

5 4 3 2 1

9 8 7 6

S
G

N
D

re
se

rv
ed

S
H

IG
H

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

S
LO

W
re

se
rv

ed
re

se
rv

ed

+10... VPE

GND

1

2

3

54321

9876

re
se

rv
ed

R
xD

T
xD

re
se

rv
ed

S
G

N
D

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

ADwin-X-A20, Manual Sep. 2019 11

X-A20 BasicADwin
6 X-A20 Basic
The basic version of X-A20 comprises:

– 3 Multi-color LED

– 8 Analog inputs, 18-bit
• X-A20-M1: Multiplexer
• X-A20-F: Synchronous conversion

– 2 Analog outputs, 12-bit

– 2 Analog outputs, 16-bit

– 8 TTL digital channels DIO39:DIO32

– 1 Event Input

– 1 LS-Bus

– Synchronous Actions

6.1 Multi-color LED
X-A20 provides 3 multi-color LEDs, which you can switch on and off.

After power-up, LED 1 serves as status LED and glows red; as soon as boot processing
has finished, Process 15 is running and makes LED 1 blink green.

Instructions to program LEDs are described starting from page 47 and in the online
help. The instructions are defined in the include file ADwin-X.inc.

6.2 Analog inputs, 18-bit
X-A20 provides 8 differential analog measuring inputs, which run via a 18-bit analog dig-
ital converter (ADC). There are two variants:

– X-A20-M1: Multiplexer

The 8 analog measuring inputs are allocated to a multiplexer and from there
connected to a 18-bit-ADC. The conversion time is 5µs (including multiplexer
settling time). The gain factor is set to 1.

– X-A20-F: Synchronous conversion

Up to 8 analog measuring inputs are converted synchronously. The gain (PGA)
is programmable to 1 or 2. The conversion time (for all channels together) de-
pends on the number of converted channels:

• 1 channel: max. 800kHz = 1.25µs.
• 2 channels: max. 550kHz = 1.82µs.
• 3 channels: max. 425kHz = 2.35µs.
• 4 channels: max. 350kHz = 2.86µs.
• 5 channels: max. 300kHz = 3.3µs.
• 6 channels: max. 250kHz = 4.0µs.
• 7 channels: max. 225kHz = 4.44µs.
• 8 channels: max. 200kHz = 5µs.

If you select different channels with a conversion instruction (ADC… /
Start_Conv) than with the previous conversion instruction, the conversion
time is extended: With the change, the conversion is processed twice, once with
the previously selected channels and once with the newly selected channels.

The input voltage range is ±10V (with gain factor 1).

The analog inputs are differential.For each of the measurement inputs there is a positive
and a negative input, between them the voltage difference is measured (but not free of
potential). Both, the positive and negative input have to be connected, see Fig. 4 – Pin
assignment analog/digital (sockets).

Please note, that the inputs do need a mass connection between the system’s GND-
plug and the signal source. This is in addition to the connections to the positive and neg-
ative input.

Function Instructions

Check LED status Check_LED

Switch LED on or off, set color Set_LED

X-A20 Basic ADwin

12 ADwin-X-A20, Manual Sep. 2019

Fig. 6 – Input circuitry of an analog input

Signals are converted fast and accurately (76µV) with the 18-bit analog-to-digital-con-
verter (ADC). Measurement values can be returned with 16 bit or 24 bit resolution.

Please note the Calculation Basics for evaluation of measurement values.

With X-A20-F there are two alternative options to convert measurement values. With X-
A20-M1 both methods are available, but only with a single channel:

– Single conversion: The conversion of one or several channels is started at a
defined time and the measurement value(s) is returned in the appropriate time.
Each conversion has to be started on its own.

– Continuous conversion: A sequential control continuously converts measurment
values on one or several selected channels. You can read the current value with-
out waiting, but the exact time of conversion is unknown. Thus, the processor
can be discharged a lot and only has to read completely converted values from
the sequential control’s buffer.

Earth protection X-A20 must be earth-protected, in order do measurements free of interference. Con-
nect the GND plug via a short low-impedance solid-type cable to the central earth con-
nection point of your device.

The enclosure is connected to GND via the GND wire of the power supply cable as well
as via the shiedling of the Ethernet cable.

The power supply via the power adapter at the PC links the ground potential of the
ADwin-X-A20 with the PC. A voltage difference between ground potentials interferes
with operation and can change measurements or cause considerable damage. Avoid
disturbances by using an external power supply.

Standard instruction The standard instruction ADC() processes a complete measurement with the ADC on
one channel (see page 58) and returns a 16-bit value.

You get measurement values with 18-bit resolution with the instruction ADC24 (see
page 59); the value is returned as a 24-bit value (see page 16).

Both instructions use the 18-bit-ADC, only the return values have different formats.

Please pay attention to a low output resistance of the signal source (of the input sig-
nals), because it may have influence on the measuring accuracy. If this is not possible:

Depending on the output resistance a linear error is caused (about 1 digit per
10Ω).
You can compensate this by multiplying the measurement value with a corre-
sponding factor and get a sort of re-calibration.

Programming Instructions to program analog inputs (both X-A20-M1 and X-A20-F) are described
starting from page 58 and in the online help. The instructions are defined in the include
file ADwin-X.inc.

AIN x 330k

330k

GND

+

-

InAmp+

-

Mul plexer /

ADC

PGA

G = 1, 2

+

-

Function Instructions -M1 -F

Do a complete conversion ADC, ADC24 x x

Do conversions on several channels ADC2, ADC4, ADC8
ADC_2_24, ADC4_24
ADC8_24

- x

Do a measurement in steps, start contin-
uous measurement

Start_Conv, Wait_EOC
Read_ADC, Read_ADC24

x x

Set gain (and start conversion) Start_Conv_PGA - x

Read several measurement values at the
same time (measurement in steps)

Read_ADC_Packed
Read_ADC8
Read_ADC8_24

- x

Start several functions synchronously. Sync_All x x

ADwin-X-A20, Manual Sep. 2019 13

X-A20 BasicADwin
6.2.1 Calculation Basics

Voltage rangeThe voltage range of the ADwin-X-A20 at the analog inputs and outputs is between
–10V to +10V or bipolar 10V.

Allocation of digits to
voltage

The 65536 (216) digits are allocated to the corresponding voltage ranges of the ADCs
and DACs so that1

– 0 (zero) digits correspond to the maximum negative voltage and

– 65535 digits correspond to the maximum positive voltage

The value for 65536 digits, exactly +10 Volt, is just outside the measurement range, so
that you will get a maximum voltage value of +9.999695V for a 16-bit conversion.

Fig. 7 – Zero offset in the standard setting of bipolar 10 Volts

In the bipolar setting, you will get a zero offset, also called offset UOFF in the following
text.
For the voltage range of -10V … +10V applies: UOFF = -10V

Gain factor kvX-A20-F has a programmable gain (PGA), which can amplify the input voltage by the
factors 1 (±10V) or 2 (±5V). The gain factor also changes the measurement range.

Please note that with a gain factor kV=2, interference signals are amplified respectively.

Quantization level ULSBThe quantization level (ULSB) is the smallest digitally displayable voltage difference and
is equivalent to the voltage of the least significant bit (LSB).

The measured value of the 18-bit ADC can be returned with 16-bit or with 24-bit format.
The DACs process values with 12 bit and 16 bit:

– 24-bit format: The 24-bit value holds the 18-bit measurement value in the bits
23:6, the measurement value being shifted by 6 bits to the left, the bits 5:0 are
always zero.

– ULSB 24bit = 20V / 224 = 1.19µV
16-bit format: The measurement value is given in the lower word (bits 15:0), the
upper word is zero.
ULSB 16bit = 20V / 216 = 305.175µV

The same applies for a DAC value to be output.

1. With a 24-bit value, 16777216 (224) digits are allocated to the voltage range.

+10

-10

0 32768 65536
0

[V]

[Digit]

X-A20 Basic ADwin

14 ADwin-X-A20, Manual Sep. 2019

A digital value for a 12-bit DAC is also given in the 16-bit format, left-aligned in
the lower word, bits 3:0 are always zero.

Fig. 8 – Storage of the ADC/DAC bits in the memory

Values in the same bit format can be added or subtracted directly, which here applies
to 12-bit and 16-bit values. To calculate values with different formats, the more accurate
24-bit value must be shifted 8 bits to the right or the 16-bit value to the left.

Conversion Digit to Voltage

DAC For a DAC (16-bit format):

ADC For an ADC (either 24-bit and 16-bit format):

Tolerance Ranges

Slight variations regarding the calculated values may be within the tolerance range of
the individual component. Two kinds of variations are possible (in LSB), which are indi-
cated in this hardware manual:

INL – The integral non-linearity (INL) defines the maximum deviation from the ideal
straight line over the whole input voltage range (see Fig. 8, page 13).

DNL – The differential non-linearity (DNL) defines the maximum deviation from the
ideal quantization level.

6.3 Analog outputs, 12-bit
ADwin-X-A20 has 2 analog outputs with 12-bit converters (DAC12-1, DAC12-2), see
page 10. Each output has a digital analog converter (DAC).

The DAC has a max. conversion time of 1000µs.

The 12-bit ADCs are internally connected to the comparator inputs DIO59:DIO48 (see
Option DCT, page 21). The set DAC voltage serves as comparator signal (0V…5V), i.e.
a given digital signal with a lower voltage is processed as level Low, with a higher volt-
age as level High.

Please note the Calculation Basics for processing of DAC values.

Programming There is a single instruction to program analog outputs, as described on page 55 and
in the online help. Instructions are defined in the include file ADwin-X.inc.

6.4 Analog outputs, 16-bit
ADwin-X-A20 has 2 analog outputs with 16-bit converters (DAC16-1, DAC16-2), see
page 10. Each output has its own digital analog converter (DAC).

The DAC has a conversion time of 1µs.

Bit no. 31:24 23:16 15:6 5:4 3:0
Inhalt 0 18-bit value in bits 23:6 0

0 0 16-bit value in bits 15:0
0 0 12-bit value in bits 15:4 0

UOUT Digits ULSB UOFF+⋅=

Digits
UOUT UOFF–

ULSB
---=

Digits
kv UIN⋅ UOFF–

ULSB
--=

UIN

Digits ULSB UOFF+⋅
kv

---=

Function Instructions

Output voltage DAC12

ADwin-X-A20, Manual Sep. 2019 15

X-A20 BasicADwin
Please note the Calculation Basics for processing of DAC values.

ProgrammingInstructions to program analog outputs are described starting from page 55 and in the
online help. The instructions are defined in the include file ADwin-X.inc.

6.5 TTL digital channels DIO39:DIO32
8 digital channels (DIO39:DIO32) are available on D-Sub socket Conn. 1, see
page 10. The channels are programmable in groups of 4 as inputs or outputs.

The channels DIO34:DIO32 can be also assigned as counter inputs (see Option CO1).
In this case only one of the functions (digital channel or counter input) can be used.

The digital channels are TTL-compatible and not protected against over voltage. Inputs
have a pull-down-resistor (10kΩ).

ProgrammingInstructions to program digital channels are described starting from page 78 and in the
online help. The instructions are defined in the include file ADwin-X.inc.

6.6 Event Input
ADwin-X-A20 provides an external trigger input (EVENT) on pin 20 of the D-Sub socket
Conn. 3, see Fig. 4 – Pin assignment analog/digital (sockets).

An external trigger signal with rising edge at the event input can start a process cycle
being completely and immediately processed, (see also ADbasic manual, chapter:
"Processes in the ADwin System").

With the instruction CPU_Event_Config, you can configure which edges at the event
input trigger a process cycle.

The event input has an internal pull-down resistance (4.7kΩ).

Function Instructions

Output voltage DAC

Output voltage in steps Write_DAC
Start_DAC

Start several functions synchronously. Sync_All

Function Instructions

Configure channels Conf_DIO

Configure input filter Digin_Filter_Init

Read input values. Digin, Digin_Long2

Control edges of digital inputs. Digin_Edge2

Set digital outputs. Digout
Digout_Long2
Digout_bits2
Get_Digout_Long2

Read and set values via latch register. Dig_Latch
Digin_Read_Latch2
Digout_Write_Latch2

Use output Fifo (with Option DCT only). Digout_Fifo_Read_Timer
Digout_Fifo_Clear
Digout_Fifo_Enable
Digout_Fifo_Empty
Digout_Fifo_Mode
Digout_Fifo_Start
Digout_Fifo_Write

Use input Fifo (with Option DCT only). Digin_Fifo_Read_Timer
Digin_Fifo_Clear
Digin_Fifo_Enable
Digin_Fifo_Full
Digin_Fifo_Read

Start several functions synchronously. Sync_All

X-A20 Basic ADwin

16 ADwin-X-A20, Manual Sep. 2019

The level of the event input can be read via software as digital input DIGIN62.

6.7 LS-Bus
ADwin-X-A20 provides one interface for LS bus on a 9-pin DSub connector
LS-BUS.

The LS bus is a bi-directional serial bus with 5MHz clock rate (Low Speed).
The bus is a in-house-design to access external modules. The first module
available is HSM-24V, which can process 24 Volt signals on 32 digital
channels.

The bus is set up as line connection, i.e. the ADwin interface and up to 15
LS bus modules are connected to each other via two-way links. The last
module of the LS bus must have the bus termination activated. The
maximum bus length is 5m.

The LS bus modules are programmed with ADbasic instructions, which are sent via the
LS bus interface of the ADwin system. The instructions for the LS bus module are
described in the manual of the LS bus module and in the online help.

Programming Instructions to program LS bus modules are described starting from page 164 and in
the online help. The instructions are defined in the include file ADwin-X.inc.

6.8 Synchronous Actions
ADwin-X-A20 enables to synchronously start actions at different innputs and outputs
with the instruction Sync_All. The instruction is desribed on page 51.

The following actions are available (according to the version): read and output analog
signals, read and output digital signals, start edge output / edge detection on digital
channels, copy counter values, reset counters, read SSI signal.

S
ig
n
a
l
G
N
D

R
E
S
E
R
V
E
D

S
ig
n
a
l
H
IG
H

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

S
ig
n
a
l
L
O
W

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

12345

6789

Function Instructions

Initialize LS bus module LS_DIO_Init

Set and read digital channels on the LS bus
module 1

LS_Dig_IO (no other instructions
usable)

Output digital signals LS_Digout_Long
LS_Digout_Long_BS

Read digital signals LS_Digin_Long
LS_Digin_Long_BS

Read over-current status from module outputs LS_Get_Output

Reset interface LS_Reset

Use LS bus watchdog LS_Watchdog_Init
LS_Watchdog_Reset

ADwin-X-A20, Manual Sep. 2019 17

Option CO1ADwin
7 Option CO1
Option X-A20-CO1 additionally provides a TTL counter block with number 1.

The counter inputs are on the pins DIO34:DIO32 on DSub socket Conn. 1., see fig. 4
on page 10.

The pins have a double allocation as digital channels, see TTL digital channels
DIO39:DIO32. The channels must be configured as digital inputs with Conf_DIO to
enable the usage as counter inputs.

The counter inputs A/CLK, B/DIR, and CLR/LATCH are TTL compatible and are not pro-
tected against over-voltage.

All functions of counter block 1 are described in chapter 15 “Counter block“.

ProgrammingInstructions to program counters are described starting from page 111 and in the online
help. The instructions are defined in the include file ADwin-X.inc.

Function Instructions

Configure channels as inputs. Conf_DIO

Clear counter. Cnt_Clear

Disable or enable counter (please note already
running counters).

Cnt_Enable
Cnt_PW_Enable

Read out status register. Cnt_Get_Status

Write counter value into Latch A. Cnt_Latch

Write counter value into latch A and read the
latch value.

Cnt_Sync_Latch

Set counter operation mode. Cnt_Mode

Read latch value. Cnt_Read

Return the content of a counter register. Cnt_Read_Latch

Set counter mode to single ended / differential
inputs.

Cnt_Read_Int_Register

Write PWM counter values into latch A. Cnt_PW_Latch

Read frequency and duty cycle of a PWM
counter.

Cnt_Get_PW

Read high time and low time of a PWM counter. Cnt_Get_PW_HL

Start several functions synchronously. Sync_All

Option D ADwin

18 ADwin-X-A20, Manual Sep. 2019

8 Option D
Option X-A20-D additionally provides:

– 8 Diff. digital channels DIO47:DIO40

– 2 Diff. counters 4, 5

– 1 SSI interface

8.1 Diff. digital channels DIO47:DIO40
8 differential digital channels (DIGIN47:DIGIN42, DIO41:DIO40) are available on D-
Sub socket Conn. 2, see fig. 4. The channels DIO41:DIO40 are each programmable
as input or output, all other channels are set as inputs.

The channels DIGIN47:DIGIN42 can be also assigned as counter inputs (see Diff.
counters 4, 5). In this case only one of the functions (digital channel or counter input)
can be used.

The digital channels are differential and not protected against over-current. For each
channel there is a positive and a negative pin, between which the voltage difference is
measured (but not free of potential). Between each pair of channel pins, there is a bus
termination of 120Ω..

The inputs require TTL-like signals.

Programming Instructions to program digital channels are described starting from page 78 and in the
online help. The instructions are defined in the include file ADwin-X.inc.

8.2 Diff. counters 4, 5
Option X-A20-D additionally provides two differential counters with numbers 4 and 5.

The counter inputs are on the pins DIGIN47:DIGIN42 on DSub socket Conn. 2., see
fig. 4 on page 10.

The inputs require TTL-like signals.

The pins have a double allocation as digital channels, see Diff. digital channels
DIO47:DIO40. The channels must be configured as digital inputs with Conf_DIO to
enable the usage as counter inputs.

The counter inputs A/CLK, B/DIR, and CLR/LATCH are differential and not protected
against over-voltage. For each channel there is a positive and a negative pin, between
which the voltage difference is measured (but not free of potential). Between each pair
of channel pins, there is a bus termination of 120Ω.. Both, the positive and negative
input have to be connected at each input.

All functions of counter blocks 4 or 5 are described in chapter 15 “Counter block“.

Programming Instructions to program counters are described starting from page 111 and in the online
help. The instructions are defined in the include file ADwin-X.inc.

Function Instructions

Configure channels Conf_DIO

Configure input filter Digin_Filter_Init

Read input values. Digin, Digin_Long2

Control edges of digital inputs. Digin_Edge2

Set digital outputs. Digout
Digout_Long2
Digout_bits2
Get_Digout_Long2

Read and set values via latch register. Dig_Latch
Digin_Read_Latch2
Digout_Write_Latch2

Start several functions synchronously. Sync_All

Function Instructions

Configure channels as inputs. Conf_DIO

Clear counter. Cnt_Clear

ADwin-X-A20, Manual Sep. 2019 19

Option DADwin

8.3 SSI interface
An incremental encoder with SSI interface can be connected the decoder. The signals
are differential and have RS422/485 levels.

A decoder either reads out an individual value (on request) or continuously provides the
current value.

The decoder connections are provided on the socket Conn. 2, pins SSI CLK, SSI
DATA. For pinouts see fig. 4 on page 10.

Pin SSI DATA / DIGIN60 may also be used as digital input to evaluate the SSI input
level.

Setting propertiesThe following properties of the decoders can be set via software:

– Clock rate: With SSI_Set_Clock, clock rates of approx. 100kHz up to 2.5MHz
are possible.

– Timing: SSI_Set_Delay sets the time between reading two encoder values.

– Resolution: Can be set with SSI_Set_Bits up to 32 bit.

Example:
Conversion of
Gray code

A conversion from Gray code into binary code is made with the routine below, which you
have programmed in the ADbasic process.

REM Par_1 = Gray value To be converted
REM Par_2 = Flag indicating a new Gray value
REM Par_9 = Result of the Gray-To-binary conversion

Dim m, n As Long

Event:
If (Par_2 = 1) Then 'Start of conversion
m = 0 'initialize value
Par_9 = 0 ' -"-
For n = 1 To 32 'Go through all possible 32 bits
 m = (Shift_Right(Par_1,(32-n)) And 1) XOr m
 Par_9 = (Shift_Left(m,(32-n))) Or Par_9
Next n

Par_2=0 'Enable next conversion
EndIf

Fig. 9 – Listing: Conversion of Gray code into binary code

ProgrammingInstructions to program digital channels are described starting from page 128 and in the
online help. The instructions are defined in the include file ADwin-X.inc.

Disable or enable counter (please note already
running counters).

Cnt_Enable
Cnt_PW_Enable

Read out status register. Cnt_Get_Status

Write counter value into Latch A. Cnt_Latch

Write counter value into latch A and read the
latch value.

Cnt_Sync_Latch

Set counter operation mode. Cnt_Mode

Read latch value. Cnt_Read

Return the content of a counter register. Cnt_Read_Latch

Set counter mode to single ended / differential
inputs.

Cnt_Read_Int_Register

Write PWM counter values into latch A. Cnt_PW_Latch

Read frequency and duty cycle of a PWM
counter.

Cnt_Get_PW

Read high time and low time of a PWM counter. Cnt_Get_PW_HL

Start several functions synchronously. Sync_All

Function Instructions

Option D ADwin

20 ADwin-X-A20, Manual Sep. 2019

Function Instruction

Initialize decoder SSI_Mode
SSI_Set_bits
SSI_Set_Clock
SSI_Set_Delay

Read encoder values SSI_Read
SSI_Start
SSI_Status

Start several functions synchronously. Sync_All

ADwin-X-A20, Manual Sep. 2019 21

Option DCTADwin
9 Option DCT
Option X-A20-DCT includes all functions of option D. Option DCT provides:

– 52 digital channels
• 32 TTL-digital channels DIO31:DIO00, page 21
• 8 Diff. digital channels DIO47:DIO40, page 18 (see option D)
• 12 Comparator inputs DIO59:DIO48, page 21
• Edge control and Edge output for digital channels, page 22

– Counters
• 2 TTL Counters 2, 3, page 22
• 2 Diff. counters 4, 5, page 18 (see option D)
• 2 Comparator Counters 6, 7, page 23

– 1 SSI interface, page 19 (see option D)

9.1 TTL-digital channels DIO31:DIO00
32 digital channels (DIO31:DIO00) are available on D-Sub socket Conn. 3, see Fig. 4
– Pin assignment analog/digital (sockets). The channels are programmable as inputs or
outputs in groups of 8.

The channels DIO31:DIO26 are double assigned as counter inputs (see TTL Counters
2, 3). Only one of the two purposes (digital channel or counter input) can be used.

The channels are TTL-compatible and not protected against over-current.

Input and output FIFOs enable edge control for digital channels, see Edge control and
Edge output on page 22.

Instructions to program digital channels see below (chapter 9.2 and chapter 9.3).

9.2 Comparator inputs DIO59:DIO48
12 digital inputs (DIGIN59:DIGIN48) with comparator function are available on D-Sub
socket Conn. 2, see Fig. 4 – Pin assignment analog/digital (sockets). All channels are
permanently set as inputs and cannot be used as outputs.

The channels DIGIN53:DIGIN48 can also be used as comparator counter inputs, see
Comparator Counters 6, 7. Only one of the functions (digital channel or counter input)
can be used at a time.

Comparator inputs are internally connected with the analog outputs of the 12-bit DAC,
DAC12-1 with DIGIN55:DIGIN48 and DAC12-2 with DIGIN59:DIGIN56. The set DAC
voltage (0V…5V) serves as comparator signal, i.e. an applied digital signal with a lower
voltage is processed as level Low, with a higher voltage as level High.

The maximum measurement frequency depends on the comparator signal set (at the
DAC) and on the voltage of the input signal. For input voltages around +24V, the max-
imum measurement frequency is less than 30kHz.
For an accurate measurement of the pulse width of the input signal, a measurement fre-
quency well below the maximum must be selected.

The comparator inputs can be combined with edge control for digital channels, see
Edge control and Edge output on page 22.

ProgrammingInstructions to program digital channels are described starting from page 78 and in the
online help. The instructions are defined in the include file ADwin-X.inc.

Function Instructions

Configure channels Conf_DIO

Configure input filter Digin_Filter_Init

Read input values. Digin, Digin_Long2

Control edges of digital inputs. Digin_Edge2

Set digital outputs. Digout
Digout_Long2
Digout_bits2
Get_Digout_Long2

Option DCT ADwin

22 ADwin-X-A20, Manual Sep. 2019

9.3 Edge control and Edge output
Option X-A20-D can automatically monitor the edges of digital inputs and independently
output edges on digital outputs at determined points in time.

Edge detection and edge output are available for all digital channels of X-A20, not only
for channels of option DCT.

There are two input FIFOs and two output FIFOs, each FIFO refers to 32 digital chan-
nels (DIO31:DIO00 or DIO60:DIO32).

Edge control An edge detection checks every 10ns whether a level has been changed at the selected
digital inputs or if an edge has has occurred ist. With every change, a value pair is cop-
ied to the appropriate input FIFO:

– Value 1 contains the level status of all 32 channels as bit pattern.

– Value 2 is a time stamp, the current value of the 100MHz timer. Each edge
detection has its own timer.

Up to 511 of value pairs (level status and time stamp) can be stored in an input FIFO,
building an exact logging of all changes. The FIFO data can be read and processed

The edge detections for channels DIO31:DIO00 and DIO60:DIO32 work independently
from each other.

As an alternative, you can register edges (without time stamps) of selected input chan-
nels with Digin_Edge1/2. If a positive or a negative edge arrives at an input, the
appropriate bit of the input channel is set in a buffer. The buffer content can be read at
any time. Number and timing of the edges are not stored.

Time-controlled edge output The edge output can independently output edges at determined points in time on the
digital outputs. An output FIFO serves as buffer for the user-defined levels and points
in time, at a maximum of 511 value pairs. The point in time can be set with an accuracy
of 10ns.

Programming Instructions to program digital channel FIFOs are described starting from page 97 and
in the online help. The instructions are defined in the include file ADwin-X.inc.

9.4 TTL Counters 2, 3
Option X-A20-D additionally provides two TTL counters with numbers 2 and 3.

The counter inputs are on the pins DIO31:DIO26 on DSub socket Conn. 3., see fig. 4
on page 10.

The pins DIO31:DIO26 have a double allocation as digital channels, see TTL-digital
channels DIO31:DIO00. The channels must be configured as digital inputs with
Conf_DIO to enable the usage as counter inputs.

All functions of the counter blocks are described in chapter 15 “Counter block“.

Read and set values via latch register. Dig_Latch
Digin_Read_Latch2
Digout_Write_Latch2

Start several functions synchronously. Sync_All

Function Instructions

Function Instructions

Use output Fifo. Digout_Fifo_Read_Timer
Digout_Fifo_Clear
Digout_Fifo_Enable
Digout_Fifo_Empty
Digout_Fifo_Mode
Digout_Fifo_Start
Digout_Fifo_Write

Use input Fifo. Digin_Fifo_Read_Timer
Digin_Fifo_Clear
Digin_Fifo_Enable
Digin_Fifo_Full
Digin_Fifo_Read

Start several functions synchronously. Sync_All

ADwin-X-A20, Manual Sep. 2019 23

Option DCTADwin
Instructions to program counters are described starting from page 111, overview see
below (chapter 9.5).

9.5 Comparator Counters 6, 7
Option X-A20-D additionally provides two comparator counters with numbers 6 and 7.

The counter inputs are on the pins DIGIN53:DIGIN48 on DSub socket Conn. 2., see
fig. 4 on page 10.

The pins have a double allocation as digital channels, see Comparator inputs
DIO59:DIO48. The channels must be configured as digital inputs with Conf_DIO to
enable the usage as counter inputs.

The inputs DIGIN53:DIGIN48 of the comparator counters are internally connected with
the analog output of the 12-bit DAC DAC12-1 (see also Comparator inputs
DIO59:DIO48). The set DAC voltage (0V…5V) serves as comparator signal, i.e. an
applied digital signal with a smaller voltage is processed as level Low, with a higher volt-
age as level High.

All functions of counter blocks 4 or 5 are described in chapter 15 “Counter block“.

ProgrammingInstructions to program counters are described starting from page 111 and in the online
help. The instructions are defined in the include file ADwin-X.inc.

Function Instructions

Configure channels as inputs. Conf_DIO

Clear counter. Cnt_Clear

Disable or enable counter (please note already
running counters).

Cnt_Enable
Cnt_PW_Enable

Read out status register. Cnt_Get_Status

Write counter value into Latch A. Cnt_Latch

Write counter value into latch A and read the
latch value.

Cnt_Sync_Latch

Set counter operation mode. Cnt_Mode

Read latch value. Cnt_Read

Return the content of a counter register. Cnt_Read_Latch

Set counter mode to single ended / differential
inputs.

Cnt_Read_Int_Register

Write PWM counter values into latch A. Cnt_PW_Latch

Read frequency and duty cycle of a PWM
counter.

Cnt_Get_PW

Read high time and low time of a PWM counter. Cnt_Get_PW_HL

Start several functions synchronously. Sync_All

Option COM ADwin

24 ADwin-X-A20, Manual Sep. 2019

10Option COM
Option X-A20-COM provides additional interfaces:

– 2 CAN interfaces "High-speed", page 24.

– 1 RS232 interface, page 25.

10.1 CAN interfaces
The CAN interfaces 1 and 2 ("High-speed") run independently from each other.

10.1.1 Hardware description

The connectors of the CAN interfaces are on 9-pole DSub plugs CAN1 and CAN2, same
assignment.

Fig. 10 – CAN: Pin assignment

Both interfaces have their individual CAN-GND potentials; the potentials are both gal-
vanically isolated from each other as well as from the mass potential (GND) of the
enclosure.

If the CAN interface functions as the physical termination of a high-speed CAN bus, it
must be terminated with a 120Ω resistor (only the first or the last CAN node). CAN
nodes, which are not positioned in an end-location, must not be terminated.

If termination is required for one (or both) interfaces, the pins CAN(+) and CAN(-) must
be connected by a resistor of 120Ω.

10.1.2 Description of the CAN interface

The CAN bus interface works according to the specification CAN 2.0 parts A and B as
well as to ISO 11898. You program the interface with ADbasic instructions, which are
directly accessing the controller’s registers.

Messages sent via CAN bus are data telegrams with up to 8 bytes, which are charac-
terized by so-called identifiers. The CAN controller supports identifiers with a length of
11 bit and 29 bit. The communication, that means the management of bus messages,
is effected by an input FIFO and an output FIFO.

The CAN bus (high speed) can be set to frequencies up to 1MHz and is normally run
with 1MHz. The CAN bus is galvanically isolated from the ADwin system by optocou-
ples.

Managing messages

The CAN controller distinguishes sent messages by the identifier, i.e. a code number
of a defined bit length. The bit length determines the range of possible identifiers 0...211-
1 and 0...229-1.

Input / output FIFO The controller stores messages to be sent in an output FIFO, and received messages
in an input FIFO. After initialization of the CAN controller, both FIFOs are not configured
and are not active on the bus.

Additionally, messages can be sent with high priority. If so, messages in the output FIFO
are postponed.

In ADbasic, you get a CAN message after receipt from the input FIFO via the
can_msg[] array. The array contains up to 8 data bytes, the amount of data bytes, the
identifier, and (only receiving) a receipt time stamp (11 elements). While sending, a
message is also transferred via the can_msg[] array.

R
E
S
E
R
V
E
D

C
A
N
(-
)

C
A
N
-G
N
D

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

C
A
N
-G
N
D

C
A
N
(+
)

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

54321

9876

ADwin-X-A20, Manual Sep. 2019 25

Option COMADwin
Sending a messageSending a message is done as follows:

– Save the message and identifier in the can_msg[] array.

– Transfer the can_msg[] array with CAN_Transmit as message to the CAN
interface. As soon as the bus is ready, the message is sent.

• With normal priority, the interface stores the message in the output FIFO.
The message are sent in the order as they were stored.

• With high priority, the message is sent as soon as the CAN interface has
access to the CAN bus. Messages waiting in the output FIFO to be sent are
postponed.

Receiving a messageReceiving a message is done as follows:

– Set the receive filter to selected identifiers (CAN_RX_Set_Filter). If you do
not set the receive filter, all CAN messages are accepted.

– The CAN interface checks the bus for incoming messages, filters them accord-
ing to the receive filter and stores them in the input FIFO.

– You read the message from the input FIFO via the can_msg[] array (with
CAN_Receive) and read the appropriate identifier.

The input FIFO can store up to 64 CAN messages. If the FIFO is full, any incoming mes-
sage overwrites old data, which will be definitely lost. Therefore, pay attention to read-
ing out data faster than you are receiving them. A data loss is indicated by a flag.

Filtering incoming
messages

With CAN_RX_Set_Filter, you can set up to four receive filters for incoming mes-
sages. Filters cn be enabled and disabled individually. The identifier of an incoming
message is compared to the active receive filters and then accepted or refused:

– If the identifier of the message is equal to the receive filter, the message is stored
in th einput FIFO.

– As soon as a message has successfully passed an active receive filter it is
stored in the receive FIFO.

Setting the bus frequency

The CAN bus frequency depends on the controller configuration.

The initilization with CAN_Init configures the CAN bus frequency. In some cases, dif-
ferent settings may be useful than available with CAN_Init. If so, please refer to out
support.

ProgrammingInstructions to program counters are described starting from page 136 and in the online
help. The instructions are defined in the include file ADwin-X.inc.

10.2 RS232 interface
Die RS232 interface runs without handshake. The connectors of the CAN
interfaces are on the DSub plug RS232.

The interface provides an input FIFO and an output FIFO with a length of
each 64 byte. The following interface parameters can be set:

– Parity: In order to recognize an error or incorrect data during the trans-
fer, a parity bit can be transferred at the same time. The parity can be
even or odd or you can have no parity bit at all.

– Data bits: the active data to be transferred may be 6...8 bits long.

– Stop bits: The number of stop bits can be set to 1, 1½ or 2.

– Baud rate: The physical data are between 35 Baud and 115.2 kBaud.
Typical baud rates are 300, 600, 1200, 2400, …, 115200 Baud.

ProgrammingInstructions to program counters are described starting from page 147 and in the online
help. The instructions are defined in the include file ADwin-X.inc.

Function Instructions

Initialization CAN_Init

Receving and sending data can_msg[]
CAN_Receive
CAN_RX_Set_Filter
CAN_Transmit

54321

9876

re
se

rv
ie

rt
R

xD
T

xD
re

se
rv

ie
rt

S
G

N
D

re
se

rv
ie

rt
re

se
rv

ie
rt

re
se

rv
ie

rt
re

se
rv

ie
rt

Option COM ADwin

26 ADwin-X-A20, Manual Sep. 2019

Function Instructions

Initialization RS_Init

Receving and sending data RS_Read_FIFO
RS_Write_FIFO
RS_Write_FIFO_Full
RS_Write_FIFO_Empty

ADwin-X-A20, Manual Sep. 2019 27

Option ProfibusADwin
11 Option Profibus
The add-on X-A20-Profibus provides a fieldbus node with the functionality of a Profibus
slave. All settings are done via software.

The option cannot be combined with Option Profinet-IRT or Option EtherCAT.

Functions description

After power-on the fieldbus node must be initialized. The initialization determines sta-
tion address (slave node address) on the Profibus and the size of the input area and the
output area.

There is a range each for data input and data output; the size of each range can be set
individually, i.e. a size of 1, 2, 4, 8, 16, 32, or 61 double words.

Hardware

The pin assignment of the 9-pin DSUB connector
refers to DIN E 19245, part 3.

The Profibus has to be terminated at its physical
beginning and at the end of its segments by an
active terminator. If required, you have to add the
terminator yourself at the appropriate data lines
of the fieldbus node or use an appropriate con-
nector with integrated terminator.

Besides the DSUB connector, there are 2 LEDs, which display the operation status of
the fieldbus node: operation mode (OP) and interface status (ST).

Fig. 11 – Profibus: Meaning of LEDs

Projecting the Profibus

You are projecting the Profibus bus with a configuration tool suitable for the bus master.
The following process description uses a Profibus master of the Siemens company and
the appropriate program SIMATIC-Manager.

The process description is valid for other configuration tools, correspondingly. Look for
the exact process description of bus projection in the documentation of the configura-
tion tool.

Install the GSD file– In the program SIMATIC-Manager, install the GSD file hmsb1815.gsd of the
fieldbus node from C:\ADwin\Fieldbus\Profibus.

The configuration tool loads all required information about the new slave from
the GSD file; the file content is determined by EN 50170. Afterwards, the slave
appears in the profile tree and can be accessed.

– Set the station address of the slave in SIMATIC-Manager to the same value as
in ADbasic with Init_Profibus.

Configure the Slave– Configure the size of of the data ranges for input data and output data one by
one.

LED Status Meaning

OP off Offline or no power.

green Fieldbus node online, data exchange.

flashing green Fieldbus node online, status clear.

flashing red,
1 flash

Error: Input/output configuration does not fit to
master configuration.

flashing red,
2 flashes

Error in Profibus configuration.

ST off Offline or no power.

green initialized.

flashing green initialized, diagnostiv event(s) present.

red Exception error.

OP ST

PROFIBUS DP-V1

Option Profibus ADwin

28 ADwin-X-A20, Manual Sep. 2019

Please note the following rules:
• The terms "input" and "output" have reverse meanings in ADbasic (slave)

and in the configuration tool (master).
If the input size is initialized in ADbasic, you have to configure the output size
correspondingly in the configuration tool.

• Size of data ranges must correspond to the values used for ADbasic
initialization with Init_Profibus.

• The data range size for input and output can be set indidually. Data range
can be configured in one of the following sizes: 1, 2, 4, 8, 16, 32, 61 double
words.

The following example line in ADbasic configures the slave with station address
5, input size 2 double words, output size 4 double words:
Par_31 = Init_Profibus(5, 2, 4, conf_Arr)

To configure the slave correctly in the configuration tool, you have to set the input
first to 4 double words and then the output to 2 double words. The graphic shows
the example configuration:

ADwin-X-A20, Manual Sep. 2019 29

Option ProfibusADwin
Programming with ADbasic

The Profibus interface is programmed with ADbasic instructions which are described
starting from page 153 and in the online help. The instructions are defined in the include
file ADwin-X.inc.

Initialization must be run with low priority since it takes some time; if using high priority,
the PC would stop communication after a time-out. On the other hand, reading and writ-
ing data may happen with high priority.

Specification

The fieldbus node is in agreement with the European Standard EN 50170, Volume 2.
This norm is provided by the Profibus user organization:

Profibus Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
76131 Karlsruhe, Germany
Phone: +49-72196-58590
Fax : +49-72196-58589
Order number: 0.042

Operating modes of
fieldbus node

The following table shows the operating modes, the fieldbus node supports and its
behavior:

Fig. 12 – Profibus: Operating modes

Area Instructions

Reset, initialize data ranges Init_Profibus

Read and write data, message handling Run_Profibus

Opera t ing
mode

Behavior

Operate The Profibus slave is part of the cyclic data exchange. Input data are
transferred to the master via bus and output data are made ready for
the master to transfer them.

Clear The inputs are updated and the outputs are set to zero.

Stop The slave is no longer part of the bus communication.

Option Profinet-IRT ADwin

30 ADwin-X-A20, Manual Sep. 2019

12Option Profinet-IRT
The add-on X-A20-Profinet-IO provides a fieldbus node with the functionality of a Profi-
net IRT slave. All settings are done via software.

The option is available with different connectors:

– Profinet-IRT-Cu: Interface with copper cable, 2 sockets RJ-45, customary con-
nectors.

– Profinet-IRT-FO: Interface with optical fiber, 2 duplex sockets SC-RJ (fiber
optics).

The option cannot be combined with Option Profibus or Option EtherCAT.

Functions description

After power-on the fieldbus node must be initialized. The initialization determines the
size of the input and output areas.

There is a range each for data input and data output; each range has a maximum size
of 1280 bytes. Please note, that the terms "input" and "output" are used as the fieldbus
master sees them.

During initialization, you set the number and size of input and output areas separately.
Nevertheless, during operation only one size can be used.

Hardware

The connectors are connected to standard plugs:

– Ethernet plugs RJ-45 (IRT-Cu)

Left and right of the RJ-45 connectors,
there are two LEDs, which display the op-
eration status of the profinet node: net-
work status (NS) and interface status
(MS).

In each connector there is a LINK LED.

– Fiber duplex plugs SC-RJ (IRT-FO)

Left and right of the connectors, there are
four LEDs. The half concealed LEDs dis-
play the operation status of the profinet
node: network status (NS) and interface
status (MS).

The LEDs more outside display the LINK status for the plug.

NS MS

PROFINET
P1 P2

NS MS

PROFINETP1 P2

ADwin-X-A20, Manual Sep. 2019 31

Option Profinet-IRTADwin

Fig. 13 – Profinet: Meaning of LEDs

Projecting the Profinet

You are projecting the Profinet bus with a configuration tool suitable for the bus master.
The following process description uses a Profinet master of the Siemens company and
the appropriate program SIMATIC-Manager.

The process description is valid for other configuration tools, correspondingly. Look for
the exact process description of bus projection in the documentation of the configura-
tion tool.

Install the GSD file– In the program SIMATIC-Manager, install the GSD file GSDML-V2.33-
HMS-ABCC40-PIR-ADwin-20180620.xml of the fieldbus node from
C:\ADwin\Fieldbus\Profinet.

The configuration tool loads all required information about the new slave from
the appropriate XML file; the file content is determined by EN 50170. After-
wards, the slave can be accessed by any master.

– In the configuration tool, add the Slave, i.e. the fieldbus node to the Profinet.

Afterwards the bus could be structured as below:

LED Status Meaning

NS off Offline: No power or no connection with IO controller.

green Online (RUN): Field bus node online, IO Controller in
RUN state.

green, 1 flash Online (STOP): Field bus node online, IO Controller in
STOP state or IO data bad. IRT synchronization not fin-
ished.

green, blinking Blink: Used by engineering tools to identify the node on
the network.

red Fatal event: Major internal error. Indication is combined
with a red MS LED.

red, 1 flash Station name error: Station name is not set.

red, 2 flashes IP address error: IP address is not set.

red, 3 flashes Configuration error: Expected identification differs from
real identification.

MS off Not initialized: No power or module in SETUP or
NW_INIT state.

green Normal operation.

green, 1 flash Diagnostic events present.

red Device in state EXCEPTION.

red Fatal event: Major internal error. Indication is combined
with a red NS LED.

red / green
alternating

Firmware update. Do not power off the device. Turning
the device off during this phase could cause perma-
nent damage.

LINK off No link.

green Ethernet link established, no communication.

green
flickering

Ethernet link established, communication present.

Option Profinet-IRT ADwin

32 ADwin-X-A20, Manual Sep. 2019

Configure the Slave – Configure number and length of input and output data of input and output data
in the fieldbus node memory one by one.

Please note the following rules:
• The terms "input" and "output" have reverse meanings in ADbasic (slave)

and in the configuration tool (master).
If there are inputs initialized in ADbasic, you have to configure outputs as
correspondent in the configuration tool.

• Number and length of data ranges must equal the data used for ADbasic
initialization with Init_ProfinetIO.

• The data range sizes for input and output can be set indidually. Data ranges
can be configured in on e of the following sizes (1 double word = 4 byte):
1, 2, 4, … 64 double words; 64, 128, … 320 double words.
The blocks of 64 double words are numbered and may only be configured
in ascending order IN0…IN5 / OUT0…OUT5.

Example configuration The following example line in ADbasic configures the slave with an input range
and an output range of 320 double words each (=1280 bytes):
Init_ProfinetIO(320, 320, work_arr)

To configure the slave correctly in the configuration tool, you have to set 5 blocks
of 256 bytes (=64 double words) in both input range and output range. Please
note the required order of block configuration:

ADwin-X-A20, Manual Sep. 2019 33

Option Profinet-IRTADwin
Programming with ADbasic

The Profinet interface is programmed with ADbasic instructions which are described
starting from page 190 and in the online help. The instructions are defined in the include
file ADwin-X.inc.

Specifications

The fieldbus node is in agreement with the Standard IEC 61158 (Profinet). This norm
is provided by the Profibus user organization:

ProfibusNutzerorganisation e.V.
Haid-und-Neu-Str. 7
76131 Karlsruhe, Germany
Phone: +49-72196-58590
Fax : +49-72196-58589
www.profibus.com

Operating modes of
fieldbus node

The following table shows the operating modes, the fieldbus node supports and its
behavior:

Fig. 14 – Profinet: Operating modes

Area Instructions

Reset, initialize data ranges Init_ProfinetIO

Read and write data, message handling Run_ProfinetIO

Opera t ing
mode

Behavior

Setup Interface initialization.

Wait Slave waits for bus start by master.

Active Profinet slave is part of the cyclic data exchange.

Error Error. Profinet slave is not part of the cyclic data exchange.

Exception Major internal error. Profinet slave is not part of the cyclic data
exchange.

Option EtherCAT ADwin

34 ADwin-X-A20, Manual Sep. 2019

13Option EtherCAT
The add-on X-A20-EtherCAT provides a fieldbus node with the functionality of an Ether-
CAT slave. All settings are done via software.

The option cannot be combined with Option Profibus or Option Profinet-IRT.

Functions description

After power-on the fieldbus node must be initialized in ADbasic. The initialization deter-
mines the size of the input and output areas.

There is a range each for data input and data output; each range has a maximum size
of 1440 bytes. Please note, that the terms "input" and "output" are used as the fieldbus
master sees them.

During initialization, you set the number and size of data ranges in the input area and
the output area separately. Nevertheless, during operation only one size can be used.

Hardware

The interface has two standard Ethernet plugs
RJ-45 marked with IN and OUT.

Inside each plug there are two LEDs; the upper
left is named Link / Activity and displays the
node operation status on the EtherCAT bus. The
upper right LED has no function.

Left and right of the RJ-45 connectors, there are two LEDs, which display the EtherCAT
status (RUN) and the occurrence of communication errors (ERR).

Fig. 15 – EtherCAT: Bedeutung der LED

If both LEDs RUN and ERR turn red, a fatal event has occurred in the interface. Please
do refer to the supoort of Jäger Messtechnik; you find the address on the inner side of
the cover page of the manual.

Projecting the EtherCAT bus

You are projecting the EtherCAT bus with a configuration tool suitable for the bus mas-
ter. The following process description uses the program "TwinCAT System Manager" of
the Beckhoff company (version 3.1) as EtherCAT bus master.

LED Status Bedeutung

Link /
Activ-
ity

off Offline (or no power).

green Fieldbus node online, no data exchange.

green,
flickering

Fieldbus node online, with data exchange.

RUN off Status INIT: interface being initialized (or no power).

blinks green Status PRE-OP: Interface has contact to bus master.

flashes green
once

Status SAFE-OP: Interface can read data from the
bus, but not send.

green Status OP: Interface is completely ready, inputs and
outputs are active.

red Status EXCEPTION.

ERR off No error (or no power).

blinks red Invalid configuration.

flashes red
once

Local error in the interface; EtherCAT status has
been changed.

flashes red
twice

Application watchdog time-out.

red Critical communication error.

RUN ERR

EtherCAT
IN OUT

ADwin-X-A20, Manual Sep. 2019 35

Option EtherCATADwin
The process description is valid for other configuration tools, correspondingly. Look for
the exact process description of bus projection in the documentation of the configura-
tion tool.

– Configure the ADwin-EtherCAT slave in an ADbasic program using the instruc-
tion Init_EtherCAT.

– Copy the description file HMS CompactCom 40 EtherCAT 2_08.xml of the
fieldbus node from C:\ADwin\Fieldbus\EtherCAT into the root directory of
the configuration tool.

Upon start-up, the configuration tool loads the required information about the
new slave from the appropriate description file.

– Add the ADwin-EtherCAT slave as bus member to the EtherCAT bus.

Using TwinCAT System Manager, you mark the EtherCAT master and select the
menu entry Scan from the context menu (right mouse click).
A list of all current bus members will be displayed.

– Select the ADwin-EtherCAT slave from the list; now the slave is confirmed as
bus member.

– Read the configuration into the configuration tool.

Using the TwinCAT System Manager, you mark the ADwin-EtherCAT slave and
click the button Load PDO Info from the device.

– Now the bus projecting is complete and the module is ready to run.

Option EtherCAT ADwin

36 ADwin-X-A20, Manual Sep. 2019

Programming with ADbasic

The fieldbus node is easily programmed with ADbasic instructions from ADwin-X.inc;
description see page 160 or in the online help:

Specifications

The fieldbus node is in agreement with the international standard IEC 61158 and IEC
61784-2. More information is provided by the EtherCAT user organization:

EtherCAT Technology Group
Ostendstraße 196
D-90482 Nürnberg
Tel.: +49 9115405620
Fax : +49 9115405629
http://www.ethercat.org/

Operating modes of
EtherCAT node

The following table shows the operating modes, the EtherCAT node supports and its
behavior:

Fig. 16 – EtherCAT: Operating modes

Area Instructions

Reset, initialize data ranges Init_EtherCAT

Read and write data,
message control

Run_EtherCAT

Opera t ing
mode

Behavior

Init The EtherCAT slave is being initialized by the bus master.

Boot The EtherCAT slave is in boot mode.

PreOp The interface is part of the data exchange, inputs and outputs are not
active.

SafeOp The interface can receive data, outputs are not active.

Op The interface is completely ready; inputs and outputs are active.

ADwin-X-A20, Manual Sep. 2019 37

Option BootADwin
14Option Boot
ADwin-X-A20-Boot starts a previously programmed application automatically after
power-up. After installation of this application an operation without computer is possi-
ble.

You program the bootloader in the development environment ADbasic, menu entry
Tools / Bootlader.

With ADwin-X-A20-Boot, the following steps are executed after power-up:

– Loading the operating system.

– Loading of the compiled processes, compiled by ADbasic (max. 10).

– Automatic starting of the process no. 10. Here you have also to program the start
of all other processes.

If you do not wish to work with the bootloader option:

– Disable temporarily:
• Switch on ADwin-X-A20.
• Boot the system from ADbasic. The previously saved processes are

disabled.
• After another power-up, the bootloader option is enabled again.

– Disable permanently:
• Disable the bootloader in ADbasic, menu entry Tools / Bootlader, Tab

Enable/Disable.
• Switch off ADwin-X-A20 and power-up again.

ADwin-X-A20-Boot does not provide an EEPROM (unlike other ADwin hardware).

Counter block ADwin

38 ADwin-X-A20, Manual Sep. 2019

15Counter block
Each of the 7 counters in ADwin-X-A20 is designed as counter block. In a counter bloc,
there are two 32-bit counters running in parallel and independently:

– One up/down counter with clock/direction evaluation or four edge evaluation for
quadrature encoders.

– One PWM counter for measurement of frequency and duty cycle or high time /
low time.

Counters are configured via software, counter data are provided in latches to be read.

An ADwin-X-A20 can be equipped with up to 7 counters in total. The counter numbers
are assigned to the following options:

– Counter 1 (TTL): Option CO1, page 17

– Counters 2…3 (TTL): Option DCT, page 22

– Counters 4…5 (differential): Option D / Option DCT, page 18

– Counters 6…7 (comparator): Option DCT, page 23

Up/down counter

With event counting, incrementing/decrementing of the counter is caused by external
square-wave signals at the inputs A/CLK and B/DIR.
A positive edge at CLR/LATCH either sets the counter to zero (CLR) or copies the
counter values into the latch (LATCH). See also chapter 13.2.

Fig. 17 – Block diagram of a counter block

32 Bit Latch
10

32 Bit Latch
9

32 Bit Latch
8

32 Bit Latch
14

32 Bit Latch
13

32 Bit Latch
12

32 Bit Latch
11

control register

NOTE: Only counter #1 is shown for clarity of the schematic.

us

DIR

A/CLK/PWM

B/DIR/PWM

CLR/LATCH

EVENT
G

100MHz

AB_CLKDIR_SEL

SLOPE_SEL

CLR_LT_SEL

CLEAR

LATCH

VR_SLOPE_SEL

AB_CLKDIR_SEL

PWM_IN_SEL

LATCH_ALL

VR_ENABLE

CLR_LATCH_SEL

VR_LATCH

VR_CLEAR

32 bit PWM counterCLK

EN

CLR
32 bit up/down counter

CLK

EN

CLR

DIR

PWM_CLEAR

PWM_ENABLE

PWM_SLOPE_SEL

VR_DIR

CNT_DIR

PWM_IN_SEL

FOUR SLOPE EVALUATION

LATCH_ALL

(to shadowed latches)

32 bit latch
7

32 bit latch
0

32 bit latch
1

32 bit latch
2

32 bit latch
3

32 bit latch
4

32 bit latch
5

32 bit latch
6

LATCH_ALL

(from control register)

4
k
7

4
k
7

4
k
7

4
k
7

ADwin-X-A20, Manual Sep. 2019 39

Counter blockADwin
The following modes are possible:

1. Clock and direction: A positive edge at CLK increments or decrements the
counter values by one. The signal at DIR determines the counting direction (0 =
decrement; 1 = increment).

2. Four edge evaluation (A/B): Every edge of the signals (phase-shifted by 90
degrees) at A/CLK and B/DIR causes the counter to increment/decrement. The
counting direction is determined by the sequence of the rising/falling edges of
these signals. This mode is particularly used for quadrature encoders.

You can invert the signals at the inputs A/CLK and B/DIR via software (instruction
Cnt_Mode) and thus change both the triggering signal and the counting direction.

PWM counter

For pulse width measurement, incrementing/decrementing of the counter is caused by
an internal reference clock generator; a signal frequency of 100MHz can be used. See
also chapter 13.3.

The counter value is written into a latch register if an edge–at one’s option positive or
negative–occurs at the selected input (A/CLK, B/DIR or CLR/LATCH). Latching can be
triggered by software, too.

From the latch register, frequency and duty cycle or high time / low time of the PWM sig-
nal can be read.

Input signals

The counters are controlled by ADbasic instructions via control register (instructions
see below).

At the inputs A/CLK, B/DIR and CLR/LATCH TTL-alike signals are necessary.

Although all counter inputs have a pull-down resistor of 10kΩ, not-connected inputs can
cause errors in an environment, which is not protected against interferences. If you do
not use a counter input, connect both lines of the (differential) input to a specified poten-
tial for safety reasons: Connect the positive input to +5V and the negative input to GND.

Programming counters

The functions for counter access be found in the include files ADwin-X.inc for ADba-
sic.

Therefore, programming has to start with the include file, so that you can use the
instructions in the following table. The instructions are described in chapter 7.2, starting
from page 111.

Fig. 18 – Instructions for a counter block

Mostly, the instructions are effecting all counters. Therefore, pay attention to the fact,
which bits you are setting or deleting. You will be able to effect every counter individually
or all together.

Instruction Function
Cnt_Clear Clear counter.
Cnt_Enable
Cnt_PW_Enable

Disable or enable counter (please note already running
counters).

Cnt_Get_Status Read out status register.
Cnt_Latch Write counter value into Latch A.
Cnt_Sync_Latch Write all counter values into latches at the same time.
Cnt_Mode Set counter operation mode.
Cnt_Read Write counter value into latch A and read the latch value.
Cnt_Read_Latch Read latch value.
Cnt_Read_Int_Regi
ster

Return the content of a counter register.

Cnt_PW_Latch Write PWM counter values into latch A.
Cnt_Get_PW Read frequency and duty cycle of a PWM counter.
Cnt_Get_PW_HL Read high time and low time of a PWM counter.
Sync_All Start several functions synchronously.

Counter block ADwin

40 ADwin-X-A20, Manual Sep. 2019

Sequence of instructions Please configure the counters according to the following order:

1. Disable specified counter (Cnt_Enable)

2. Set operating mode (Cnt_Mode)

3. Clear counter (Cnt_Clear)

4. Enable counter (Cnt_Enable)

For further processing of the values in the ADbasic program, transfer the values into the
latch register and read them out there.

If you disable or enable a specified counter, then you also enable the running counters
(= set bits). If you do not set the bits of these counters (unintentionally), they will be dis-
abled.

15.1 Evaluation of the Counter Contents
The binary counters generate 32-bit values, which are interpreted by ADbasic as
numerical values according to the model of the circle below: The most significant bit
(MSB) is interpreted as a sign, the highest positive number (231-1) follows the highest
negative number (-231) and the lowest positive number (0) follows the highest negative
number (-1).

Circle

Fig. 19 – Circle for the interpretation of counter values

Please pay attention to the following rules for programming:

a) Process the read 32-bit value only with variables of the type LONG. ADbasic then
keeps internally the read bit pattern unmodified and automatically considers the
transition from the positive to the negative range of numbers. Then you get:

Count direction b) The count direction (up or down) can reliably be derived from the
Sign of the difference: [new counter value] minus [old counter value]
and not from the comparison of the counter values.

"Overflow" For programming please remember that an "overflow" between the reading out of two
counts - i.e. the current counter value "laps" the last counter value, which has been read
out - is not registered. Such a lap overflow occurs after some 42 seconds with an input
frequency of 100MHz.

0000 0000h

FFFF FFFFh

7FFF FFFFh

8000 0000h
4
0
0
0
0
0
0
0
h

3
F
F
F
F
F
F
F
h

B
F
F
F
F
F
F
F
h

C
0
0
0
0
0
0
0
h

-1,073,741,824-1,073,741,825

1,073,741,823 1,073,741,824

2,147,483,647

-2,147,483,648

0

-1

i ns ide :coun te r va lue
(binary)

outside:ADbasic value

ADwin-X-A20, Manual Sep. 2019 41

Counter blockADwin
15.2 Using Event Counter
External square-wave signals at the inputs A/CLK and B/DIR clock the counters in this
mode.

The input CLR/LATCH (at high-signal) can be used to

– clear the counter (CLR)

– latch the counter values into latch register A (LATCH).

15.2.1 Clock and Direction

Fig. 20 – Block diagram in the mode
"clock and direction"

Every positive edge of a square-wave signal at the CLK input (clock) is counted (incre-
mented or decremented) up to a maximum frequency of 20 MHz. The direction is
derived from a high signal (count up) or low signal (count down) at the DIR input (direc-
tion); This signal can be static, for a fixed count direction, or dynamic, for changing
directions.

The signals at the inputs A/CLK and B/DIR can be (individually) inverted with
Cnt_Mode.

Programming example#Include ADwin-X.inc
Dim val As Long
Init:
…
Cnt_Enable(0) 'stop all counters
Cnt_Clear(0001b) 'clear counter 1
Rem set operation mode of counter 1:
Rem Bit 0: Mode clock/direction
Rem Bit 1: Clear mode with CLR input
Rem Bit 2: do not invert input A/CLK
Rem Bit 3: do not invert input B/DIR
Rem Bit 4: set input CLR/LATCH as CLR input
Rem Bit 5: enable input CLR/LATCH
Cnt_Mode(1,100000b)
Cnt_SE_Diff(0000b) 'all inputs single-ended
Cnt_Enable(0001b) 'start counter 1
…

Event:
…
Cnt_Latch(0001b) 'latch counter 1
val = Cnt_Read_Latch(0001b) 'read latch value

Control Registers

32 bit Counter

32 bit Latch A

CLK

EN

CLR

CLK

A
D
w
in
-G
O
L
D

 b
u

s

Data

Data

DIR

CLR
DIR

C
N

T
_

C
L

E
A

R

C
N

T
_

E
N

A
B

L
E

C
N

T
_

L
A

T
C

H

4k7

4k7

4k7

Counter block ADwin

42 ADwin-X-A20, Manual Sep. 2019

15.2.2 Four Edge Evaluation

This mode determines clock and direction of two signals, which are phase-shifted by 90
degrees to the inputs A and B. The count direction is determined by the temporal
sequence of the rising and falling edges of the two input signals.

Fig. 21 – Block diagram in mode
"four edge evaluation"

Please note:

– The counter counts 4 edges in one cycle of the A/B signal.

– The maximum count frequency is 20 MHz. Together with the 4 edges per cycle
it will result in a maximum input frequency of 5.0 MHz.

– The time between an edge at A and an edge at B must not be shorter than 50ns.
Impulse widths or pause durations shorter than 100 ns are not incremented.

– Changing the phase-shift will have an effect on the maximum input frequency.
If it differs from 90 degrees, the maximum input frequency of 5.0 MHz decreases
for instance to 45 degrees at 2.5 MHz.

Programming example #Include ADwin-X.inc
Dim val As Long
Init:
…
Cnt_Enable(0) 'stop all counters
Cnt_Clear(0001b) 'clear counter 1
Rem set operation mode of counter 1:
Rem Bit 0: Mode four edge evaluation
Rem Bit 1: Clear mode with CLR input
Rem Bit 2: do not invert input A/CLK
Rem Bit 3: do not invert input B/DIR
Rem Bit 4: set input CLR/LATCH as CLR input
Rem Bit 5: enable input CLR/LATCH
Cnt_Mode(1,100000b)
Cnt_SE_Diff(1111b) 'all inputs differential
Cnt_Enable(0001b) 'start counter 1
…

Event:
…
Cnt_Latch(0001b) 'latch counter 1
val = Cnt_Read_Latch(0001b) 'read latch value

Control Registers

32 bit Counter

32 bit Latch A

CLK

EN

CLR

A

A
D
w
in
-G
O
L
D

 b
u

s

Data

Data

B

CLR

DIR

4-edge
evaluation

DIR

C
N

T
_
C

L
E

A
R

C
N

T
_
E

N
A

B
L
E

C
N

T
_
L
A

T
C

H

4k7

4k7

4k7

ADwin-X-A20, Manual Sep. 2019 43

Counter blockADwin
15.3 Using PWM Counter

Reference clock generatorIn this operating mode, an internal reference clock generator clocks the counter with a
signal frequency of 100 MHz. The frequency and duty cycle can be read as well as high
time and low time.

Example#Include ADwin-X.inc
#Define frequency FPAR_1
#Define dutycycle FPAR_2
#Define hightime PAR_1
#Define lowtime PAR_2
Init:
…
Cnt_PW_Enable(0) 'stop all counters
Rem set operation mode of counter 1:
Rem Bits 0..5: no importance
Rem Bit 6: detect rising edge as PWM signal
Rem Bit 7: input B/DIR as PWM input
Cnt_Mode(1,010000000b)
Cnt_SE_Diff(1111b) 'all inputs differential
Cnt_PW_Enable(000000001b) 'start PWM counter 1
…

Event:
…
Rem latch counter 1
Cnt_PW_Latch(0001b)
Rem read frequency and duty cycle
Cnt_Get_PW(1,frequency,dutycycle)
Rem read high time and low time
Cnt_Get_PW_HL(1,hightime,lowtime)

Exception:
evaluate PWM registers on
your own

There are several registers assigned to each PWM counter being described below. If,
like in the example above, PWM counters are evaluated with standard instructions
Cnt_Get_PW and Cnt_Get_PW_HL, no further knowledge is required about PWM reg-
isters. Use the evaluation with PWM registers for special solutions only.

In order to evaluate PWM signals, the counter values of the current and the 2 preceding
counter values are stored in latch registers, both for rising and falling edges. In addition,
there is a "shadow register" for each of these 6 registers.

The register values are changed with any edge like this:

– Rising edge:
• Copy counter value to L1+
• If rising edge is set as reference edge:

Copy register L2+ to L3+
Copy register L1+ to L2+
Copy register L2– to L3–
Copy register L1– to L2–

– Falling edge:
• Copy counter value to L1–
• If falling edge is set as reference edge:

Copy register L2– to L3–
Copy register L1– to L2–

Register Latch Shadow
register

Latch 1 for positive edges (current) L1+ SL1+

Latch 2 for positive edges L2+ SL2+

Latch 3 for positive edges L3+ SL3+

Latch 1 for negative edges (current) L1– SL1–

Latch 2 for negative edges L2– SL2–

Latch 3 for negative edges L3– SL3–

Counter block ADwin

44 ADwin-X-A20, Manual Sep. 2019

Copy register L2+ to L3+
Copy register L1+ to L2+

In addition, there is a single latch register where the counter value is copied by software
(instruction Cnt_PW_Latch).

How-to:
Evaluate PWM registers

For any evaluation the PWM registers of levels 2 and 3 are used. First, the register val-
ues are copied to the shadow registers with Cnt_Sync_Latch and then evaluated.

The calculation depends on the set reference edge:

32 Bit Latch
10

32 Bit Latch
9

32 Bit Latch
8

32 Bit Latch
13

32 Bit Latch
12

32 Bit Latch
117

LATCH_ALL

(from control register)

Gold II bus

CLR/LATCH

L1+

L2+ L2-

G

100MHz

L1-

32 bit PWM counterCLK

EN

CLR

L3+ L3-

0 3

1 4

2 5

SW latch

4
k
7

Parameter rising edge falling edge

diagram

period T = L2+ − L3+ T = L2- − L3-

high time tH = L3- − L3+ tH = L2- − L3+

low time tL = T − tH = L2+ − L3- tL = T − tH = L3+ − L3-

frequency f = 1 / T = 1 / (L2+ − L3+) f = 1 / T = 1 / (L2- − L3-)

duty cycle g = tH / T = (L3- − L3+) / (L2+ − L3+) g = tH / T = (L2- − L3+) / (L2- − L3-)

L2+L3+ L1+

L2-L3-

Low

High

period T

high time tH

L2+L3+

L2-L3- L1-

Low

High

period T

high time tH

ADwin-X-A20, Manual Sep. 2019 45

SoftwareADwin
16Software

You are programming ADwin-X-A20 with simple ADbasic instructions. Basic
instructions are described in the ADbasic manual.

Instructions for access of inputs / outputs and interfaces are found on following
pages:

– page 46: General instructions

– page 53: Analog Inputs and Outputs

– page 77: Digital Inputs and Outputs

– page 110: Counter

– page 127: SSI interface

– page 135: CAN interface

– page 146: RSxxx Interface

– page 152: Profibus interface

– page 156: Profinet interface

– page 159: EtherCAT interface

– page 163: LS-Bus + ADwin-X-A20

General instructions ADwin

46 ADwin-X-A20, Manual Sep. 2019

16.1 General instructions

This section describes general instructions X-A20:

– Check_LED (page 47)

– Set_LED (page 48)

– Calc_Processdelay (page 49)

– CPU_Event_Config (page 50)

– Sync_All (page 51)

ADwin-X-A20, Manual Sep. 2019 47

Check_LEDADwin
Check_LEDCheck_LED returns the status of a LED.

Syntax

#Include ADwin-X.inc

ret_val = Check_LED(led_no)

Parameters

Notes

After power-on, serves as status LED and LED 1 glows red. After booting, pro-
cess 15 is running and makes LED 1 blink green. If required, you can stop the
process with Stop_Process.

See also

Set_LED

Valid for

X-A20

Example
#Include ADwin-X.inc

Init:
If (Check_LED(2)=0) Then 'if LED is off …
Set_LED(2,3) '… light orange LED

EndIf

led_no Number (1…3) of the LED. LONG

ret_val 0: LED off.
1: LED glows green.
2: LED glows red.
3: LED glows orange.

LONG

Set_LED ADwin

48 ADwin-X-A20, Manual Sep. 2019

Set_LED Set_LED switches one LED on or off.

Syntax

#Include ADwin-X.inc

Set_LED(led_no, color)

Parameters

Notes

After power-on, LED 1 glows red. After booting process 15 is running and makes
LED 1 blink green. If required, you can stop the process with Stop_Process.

See also

Check_LED

Valid for

X-A20

Example
#Include ADwin-X.inc
Init:
Set_LED(2,1) 'switch on LED 2, green

Event:
Rem ...

Finish:
Set_LED(2,0) 'switch off LED 2

led_no Number (1…3) of the LED. LONG

color 0: LED off.
1: LED glows green.
2: LED glows red.
3: LED glows orange.

LONG

ADwin-X-A20, Manual Sep. 2019 49

Calc_ProcessdelayADwin
Calc_
Processdelay

Calc_Processdelay converts a process frequency into processor ticks (processde-
lay or cycle time).

Syntax

#Include ADwin-X.Inc

ret_val = Calc_Processdelay(frequency)

Parameters

Notes

- / -

See also

Processdelay

Valid for

X-A20

- / -

Example
#Include ADwin-X.Inc

Init:
Rem set Processdelay for frequency 150kHz
Processdelay = Calc_Processdelay(150000)

frequency Process frequency in Hertz. LONG

ret_val Number of process cycles (= Processdelay). LONG

CPU_Event_Config ADwin

50 ADwin-X-A20, Manual Sep. 2019

CPU_Event_
Config

CPU_Event_Config configures the EVENT input.

Syntax

#Include ADwin-X.Inc

CPU_Event_Config(min_hold,edge,prescale)

Parameters

Notes

The input Event works with TTL signals only.

If input signals contain glitches - as far as can’t be avoided - you may do the fol-
lowing:

• Set parameter min_hold to 1, to filter glitches.
• Redirect the input signal via an opto couple first.

See also

- / -

Valid for

X-A20

Example
#Include ADwin-X.Inc

Init:
REM Configure input EVENT IN for mimimum time of 15 ns,
REM falling edge, 4 edges
CPU_Event_Config(0,2,4)

Event:
REM Externally controlled process starts each time, when
REM 4 falling edges have reached the input EVENT.
Rem …

min_hold Minimum time, which an event signal after an edge
must be held to be accepted:
0: 15ns (default).
1: 50ns.

LONG

edge Type of edge, which is accepted:
1: rising edge (default).
2: fallig edge.
3: rising and falling edge.

LONG

prescale Number (1…15) of edges, after which an event signal is
triggered (default: 1).

LONG

ADwin-X-A20, Manual Sep. 2019 51

Sync_AllADwin
Sync_AllSync_All starts specified actions synchronously.

Syntax

#Include ADwin-X.Inc

Sync_All(pattern)

Parameters

Notes

The action starting is similar to a standard instruction (most times). Configura-
tions being made before do apply e.g. for the multiplexer or output value.

The availability of actions refers to the X-A20 options.

Bits 0 and 1 must not be set at the same time. You must run Start_Conv with
single shot mode first, to set the used channels und the gain (if applicable).

Bits 13 and 14 reset the counters, which create the time stamps for the edge de-
tection units of the input FIFOs; see also Digout_Fifo_Read_Timer.

pattern Bit pattern selecting the actions (see table below) to be
started:
Bit = 0: No effect.
Bit = 1: Start action synchronously.
Bits 31:18 are reserved.

LONG

Bi t
no.

Action similar to

Ana log
input

0 Start an ADC conversion, mode single shot. Start_Conv

1 Start an ADC conversion, mode continuous. Start_Conv

Ana log
output

2 Start D/A conversion on DAC1 and DAC2 with the
values of the DAC registers.

Start_DAC

Dig i ta l
input

3 Transfer current status of inputs DIO31:DIO00
into the input latch register.

Dig_Latch
(0001b)

4 Transfer current status of inputs DIO63:DIO32
into the input latch register.

Dig_Latch
(0010b)

Dig i ta l
output

5 Transfer latch register to outputs DIO31:DIO00. Dig_Latch
(0100b)

6 Transfer latch register to outputs DIO63:DIO32. Dig_Latch
(1000b)

Edge
outpu t
FIFO

7 Start edge output on output FIFO 1. D igou t_
Fifo_Start

8 Start edge output on output FIFO 2. D igou t_
Fifo_Start

9 Stop the edge output and clear the edge output
FIFO 1.

D igou t_
Fifo_Clear

10 Stop the edge output and clear the edge output
FIFO 2.

D igou t_
Fifo_Clear

Edge
detec -
tion unit
FIFO

11 Clear the FIFO 1 of the edge detection unit. Digin_Fifo_
Clear

12 Clear the FIFO 2 of the edge detection unit. Digin_Fifo_
Clear

13 Clear the reference counter of the input FIFO 1. - / -

14 Clear the reference counter of the input FIFO 2. - / -

Counter 15 Set all counters 1…7 to zero. Cnt_Clear

Sync 16 Copy contents of all counters and PWM counters
into buffers.

Cnt_Sync_
Latch

SSI
decoder

17 Start reading of the SSI encoder (single shot only). SSI_Start

Sync_All ADwin

52 ADwin-X-A20, Manual Sep. 2019

See also

Start_Conv, Start_DAC, Dig_Latch, Digout_Fifo_Start, Digout_Fifo_Clear,
Digin_Fifo_Clear, Cnt_Clear, Cnt_Sync_Latch, SSI_Start

Valid for

X-A20

Example
#Include ADwin-X.Inc
Dim i As Long

Init:
Write_DAC(1,3500) 'initialize DAC 1
Write_DAC(2,65535) 'initialize DAC 2
REM Set channels DIO15:DIO00 as outputs, DIO31:DIO16 as inputs
Conf_DIO(0011b)
Digout_Write_Latch1(0) 'Set all output bits to 0
i=1 'initialize index
Rem initialize A/D conversion for Sync_All:
Rem ADC 1, gain 1, single shot (!)
Start_Conv(1b, 0, 1)
Wait_EOC() 'wait for end of conversion

Event:
Rem start ADC (single shot), both DAC, latch digital channels
Rem DIO31:0 synchronously
Sync_All(101101b)
Wait_EOC() 'Wait for end of conversion

Rem Read ADC
Par_1 = Read_ADC(1)
Write_DAC(1,Par_1) 'set DAC 1
Write_DAC(2,Par_1 * 3.5) 'set DAC 2

Par_2 = Digin_Read_Latch1() 'read input bits and …
Digout_Write_Latch1(Par_1)'output in next event cycle

If (i=1000) Then End 'End process after 1000 repetitions
Inc(i) 'Increment index

ADwin-X-A20, Manual Sep. 2019 53

Analog Inputs and OutputsADwin

16.2 Analog Inputs and Outputs

This section describes the following instructions:

– DAC (page 54)

– DAC12 (page 55)

– Start_DAC (page 56)

– Write_DAC (page 57)

– ADC (page 58)

– ADC24 (page 59)

– ADC2 (page 61)

– ADC4 (page 62)

– ADC8 (page 63)

– ADC2_24 (page 64)

– ADC4_24 (page 65)

– ADC8_24 (page 66)

– Read_ADC (page 67)

– Read_ADC24 (page 68)

– Read_ADC_Packed (page 69)

– Read_ADC8 (page 70)

– Read_ADC8_24 (page 71)

– Start_Conv (page 72)

– Start_Conv_PGA (page 74)

– Wait_EOC (page 76)

Analog Inputs and Outputs
DAC

ADwin

54 ADwin-X-A20, Manual Sep. 2019

DAC DAC outputs a defined voltage on a specified analog 16 bit output.

Syntax

#Include ADwin-X.inc

DAC (dac_no,value)

Parameters

Notes

If you specify value beyond the permissible value range, it will automatically be
set to the system-specific minimum or maximum value.

The conversion time is 1µs.

The voltage range is -10V…+10V = 20 V. With the following formula, you can cal-
culate the measured voltage from the returned digital value.

See also

DAC12, ADC, Start_DAC, Write_DAC

Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
Rem Digital proportional controller
#Define set_to Par_1 'set point
#Define gain Par_2 'gain factor
#Define diff Par_3 'control deviation
#Define out Par_4 'actuating value

Init:
Processdelay = 10000

Event:
diff = set_to - ADC(1) 'calculate control deviation
out = diff * gain 'calculate actuating value
DAC(1, out) 'output actuating value

dac_no Number of analog 16 bit output (1…2). LONG

value Value in digits, which defines the voltage to be output
(0…65535).

LONG

voltage
measurement range

65536
digits 32768bipolar

ADwin-X-A20, Manual Sep. 2019 55

Analog Inputs and Outputs
DAC12

ADwin

DAC12DAC12 outputs a defined voltage on a specified analog 12 bit output.

Syntax

#Include ADwin-X.inc

DAC12 (dac_no,value)

Parameters

Notes

If you specify value beyond the permissible value range, it will automatically be
set to the system-specific minimum or maximum value.

The conversion time is in the range of 500…1000µs.
If the DAC serves the comparator signal (see below), we recommend to set the
voltage in the Init: or LowInit: section and then wait with IO_Sleep until
the voltage has been safely set.

Bits 15:4 of value are processed as digit value, bits 3:0 are ignored.

The voltage range is -10V…+10V = 20 V. With the following formula, you can cal-
culate the measured voltage from the returned digital value.

The outputs of the DAC are internally connected to the comparator inputs. The
set DAC voltage serves as comparator signal, i.e. a digital signal with a lower
voltage is processed as level Low, with a higher voltage as level High.
The comparator signal must be in the range 0…5 Volt to have the comparator
run correctly.

See also

DAC, ADC, Start_DAC, Write_DAC, IO_Sleep

Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
Rem example for the use of comparator inputs

LowInit:
DAC12(1, 42598) 'set +3V comp. level. channels 1..8
DAC12(2, 39321) 'set +2V comp. level, channels 9..12
IO_Sleep(100000) 'wait 1 ms

Event:
Rem use comparator inputs

dac_no Number (1…2) of analog 12 bit output. LONG

value Value in digits (0, 16, …65520), which defines the volt-
age to be output.

LONG

Bit no. 31:24 15:4 3:0

Content 0 12-bit value –

voltage
measurement range

65536
digits 32768bipolar

Analog Inputs and Outputs
Start_DAC

ADwin

56 ADwin-X-A20, Manual Sep. 2019

Start_DAC Start_DAC starts the conversion or the output of all 16 bit DAC.

Syntax

#Include ADwin-X.inc

Start_DAC()

Parameters

- / -

Notes

Write_DAC sets the value in the output register of a 16 bit DAC.

You can also start a conversion with Sync_all.

See also

DAC, DAC12, Write_DAC, Sync_All

Valid for

X-A20M1, X-A20F

Example
REM Simultaneous output of two different signal waveforms
REM on outputs DAC 1 and 2.
#Include ADwin-X.inc
Dim i As Long

Init:
Processdelay = 10000
i=0
Write_DAC(1,i) 'Set output register DAC1
Write_DAC(2,65535-i) 'Set output register DAC2

Event:
Start_DAC() 'Start output of all DAC
Write_DAC(1,i) 'Set output register DAC1
Write_DAC(2,65535-i) 'Set output register DAC2
Inc(i)
If (i=65535) Then i=0

ADwin-X-A20, Manual Sep. 2019 57

Analog Inputs and Outputs
Write_DAC

ADwin

Write_DACWrite_DAC writes a digital value into the output register of a 16 bit DAC.

Syntax

#Include ADwin-X.inc

Write_DAC(dac_no,value)

Parameters

Notes

The conversion into output voltage is started by Start_DAC.

If you specify value beyond the permissible value range, it will automatically be
set to the system-specific minimum or maximum value.

See also

DAC, DAC12, Start_DAC

Valid for

X-A20M1, X-A20F

Example
REM Simultaneous output of four different signal waveforms
REM on outputs DAC 1 and 2.
REM The signal waveforms are stored in two DATA arrays and
REM can be filled before start of program from the PC.
#Include ADwin-X.inc
Dim i As Long 'Declaration
Dim Data_1[1000], Data_2[1000] As Long

Init:
Processdelay = 10000
i=1
Write_DAC(1,Data_1[i]) 'Set output register DAC1
Write_DAC(2,Data_2[i]) 'Set output register DAC2

Event:
Start_DAC() 'Start output of all DAC
Write_DAC(1,Data_1[i]) 'Set output register DAC1
Write_DAC(2,Data_2[i]) 'Set output register DAC2
Inc(i)
If (i>1000) Then i=1

dac_no Number of analog 16 bit output (1…2). LONG

value Value in digits, which defines the voltage to be output
(0…65535).

LONG

Analog Inputs and Outputs
ADC

ADwin

58 ADwin-X-A20, Manual Sep. 2019

ADC ADC measures the voltage of an analog input and returns the corresponding
digital value.

Syntax

#Include ADwin-X.inc

ret_val = ADC(channel)

Parameters

Notes

ADC24 returns digital values with 24 bit resolution.

ADC is a combination of consecutive functions:
• Start_Conv: Start measurement: Convert analog signal to a digital value.
• Wait_EOC: Wait for the end of conversion.
• Read_ADC: Read out digital value from the register and return it.

In the following cases, the instructions Start_Conv, Wait_EOC and Read_ADC
should be used instead of ADC:

• Very short cycle times: Processdelay < 240 (s.a.).
• You want to use inevitable waiting times for additional program tasks.

For example, several conversions can be processed faster than with ADC if
you utilize the functions cleverly, see Using Waiting Times (page 157).

The measurement range is ist −10V…+10V = 20V, the gain is 1. With the fol-
lowing formula, you can calculate the measured voltage from the returned digital
value.

The conversion time is 5µs with X-A20M1 (including multiplexer settling time)
and 1.25µs with X-A20F.

Please note with X-A20F: If you select different channels with a conversion in-
struction (ADC… / Start_Conv) than with the previous conversion instruction, the
conversion time is extended: With the change, the conversion is processed
twice, once with the previously selected channels and once with the newly se-
lected channels.
Example: The change from ADC8 to ADC takes 5µs + 1.25µs; the change from
ADC(3) to ADC(2) takes 1.25µs + 1.25µs.

See also

ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC,
Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_
Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
#Define in_channel 1 'input channel
#Define in_value Par_1

Event:
Rem Measure analog input 1
in_value = ADC(in_channel) * 10900

channel Number (1…8) of the analog input channel. LONG

ret_val Measurement value in digits (0…65535). LONG

voltage
measurement range

65536
digits 32768bipolar

ADwin-X-A20, Manual Sep. 2019 59

Analog Inputs and Outputs
ADC24

ADwin

ADC24ADC24 measures the voltage of an analog input and returns the corresponding digital
value. The resolution of the return value is 24 bit.

Syntax

#Include ADwin-X.Inc

ret_val = ADC24(channel)

Parameters

Notes

ADC returns digital values with 16 bit resolution.

The return value of ADC24 contains an 18 bit measurement value in bits 23:6;
bits 5:0 are always zero.

ADC24 is a combination of consecutive functions:
• Start_Conv: Start measurement: Convert analog signal–considering the

gain factor–to a digital value.
• Wait_EOC: Wait for the end of conversion.
• Read_ADC24: Read out digital value from the register and return it.

If you select a non-existing input channel the measurement value is undefined.

In the following cases, you should use the instructions Start_Conv, Wait_EOC
and Read_ADC24 instead of ADC24 in the following cases:

• Very short cycle times: Processdelay < 200: ADC cannot be executed
during the cycle time.

• High internal resistance (>3kΩ) of the voltage source of the measurement
signal: This increases the settling time of multiplexer.

• You want to use inevitable waiting times for additional program tasks.
For example, several conversions can be processed faster than with ADC24
if you utilize the functions cleverly, see Using Waiting Times (page 157).

The measurement range is 20 Volt (input voltage range: -10V…10V). With the
following formula, you can calculate the measured voltage from the returned dig-
ital value:

The conversion time is 5µs with X-A20M1 (including multiplexer settling time)
and 1.25µs with X-A20F.

Please note with X-A20F: If you select different channels with a conversion in-
struction (ADC… / Start_Conv) than with the previous conversion instruction, the
conversion time is extended: With the change, the conversion is processed
twice, once with the previously selected channels and once with the newly se-
lected channels.
Example: The change from ADC8 to ADC24 takes 5µs + 1.25µs; the change from
ADC(3) to ADC(2) takes 1.25µs + 1.25µs.

See also

ADC, ADC2, ADC4, ADC8, ADC2_24, ADC4_24, ADC8_24, Read_ADC,
Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_
Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

channel Number (1…8) of the analog input channel. LONG

ret_val Measurement value in digits
(0…16777215 = 224-1).

LONG

Bit no. 31:24 23:16 15:6 5:0

Content 0 18-bit meas. value 0

voltage
measurement range

16777216
digits 8388608bipolar

Analog Inputs and Outputs
ADC24

ADwin

60 ADwin-X-A20, Manual Sep. 2019

Example
#Include ADwin-X.Inc
Dim iw As Long

Init:
Processdelay = 10000

Event:
REM Measure voltage of analog input 1
iw = ADC24(1)
REM Write measurement value to global variable, so it
REM can be read from the PC.
Par_1 = iw

ADwin-X-A20, Manual Sep. 2019 61

Analog Inputs and Outputs
ADC2

ADwin

ADC2ADC2 measures the voltages of 2 selected analog inputs and returns the corresponding
digital values (16 bit) in an array.

Syntax

#Include ADwin-X.inc

ADC2(array[], array_idx, channel_group)

Parameters

Notes

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

The conversion time is 1.82µs (added for both channels).

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels.
Example: The change from ADC8 to ADC2 takes 5µs + 1.82µs; the change from
ADC2(0) to ADC2(3) takes 1.82µs + 1.82µs.

See also

ADC, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC,
Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_
Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
#Define in_array Data_1

Dim in_array[2000] As Long
Dim array_idx As Long

Init:
array_idx = 1

Event:
Rem measure inputs 3..4
ADC2(in_array, array_idx, 1)
array_idx = array_idx + 2
If (array_idx > 1992) Then array_idx = 1

array[] Array to hold the measurement values of the two
selected input channels.

ARRAY

LONG

array_idx Array element, which holds the first measurement
value.

LONG

channel_
group

Selected channel group:
0: Channels 1 and 2.
1: Channels 3 and 4.
2: Channels 5 and 6.
3: Channels 7 and 8.

LONG

voltage
measurement range

65536
digits 32768bipolar

Analog Inputs and Outputs
ADC4

ADwin

62 ADwin-X-A20, Manual Sep. 2019

ADC4 ADC4 measures the voltages of 4 selected analog inputs and returns the corresponding
digital values (16 bit) in an array.

Syntax

#Include ADwin-X.inc

ADC4(array[], array_idx, channel_group)

Parameters

Notes

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

The conversion time is 2.86µs (added for all channels).

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels.
Example: The change from ADC8 to ADC4 takes 5µs + 2.86µs; the change from
ADC4(0) to ADC4(1) takes 2.86µs + 2.86µs.

See also

ADC, ADC2, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC,
Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_
Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
#Define in_array Data_1

Dim in_array[2000] As Long
Dim array_idx As Long

Init:
array_idx = 1

Event:
Rem measure input 1..4
ADC4(in_array, array_idx, 0)
array_idx = array_idx + 4
If (array_idx > 1992) Then array_idx = 1

array[] Array to hold the measurement values of the four
selected input channels.

ARRAY

LONG

array_idx Array element, which holds the first measurement
value.

LONG

channel_
group

Selected channel group:
0: Channels 1…4.
1: Channels 5…8.

LONG

voltage
measurement range

65536
digits 32768bipolar

ADwin-X-A20, Manual Sep. 2019 63

Analog Inputs and Outputs
ADC8

ADwin

ADC8ADC8 measures the voltages of the analog inputs 1…8 and returns the corresponding
digital values (16 bit) in an array.

Syntax

#Include ADwin-X.inc

ADC8(array[], array_idx)

Parameters

Notes

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

The conversion time is 5µs (added for all channels).

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels.
Example: The change from ADC to ADC8 takes 1.25µs + 5µs.

See also

ADC, ADC2, ADC4, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_ADC,
Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_
Conv, Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
#Define in_array Data_1

Dim in_array[2000] As Long
Dim array_idx As Long

Init:
array_idx = 1

Event:
Rem measure inputs 1..8
ADC8(in_array, array_idx)
array_idx = array_idx + 8
If (array_idx > 1992) Then array_idx = 1

array[] Array to hold the measurement values of the input
channels 1…8.

ARRAY

LONG

array_idx Array element, which holds the first measurement
value.

LONG

voltage
measurement range

65536
digits 32768bipolar

Analog Inputs and Outputs
ADC2_24

ADwin

64 ADwin-X-A20, Manual Sep. 2019

ADC2_24 ADC2_24 measures the voltages of 2 selected analog inputs (18 bit) and returns the
corresponding digital values in an array. The resolution of the return values is 24 bit.

Syntax

#Include ADwin-X.inc

ADC2_24(array[], array_idx)

Parameters

Notes

Each return value contains an 18 bit measurement value in bits 23:6; bits 5:0 are
always zero.

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

The conversion time is 1.82µs (added for both channels).

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels.
Example: The change from ADC8 to ADC2_24 takes 5µs + 1.82µs; the change
from ADC2_24(0) to ADC2_24(3) takes 1.82µs + 1.82µs.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC4_24, ADC8_24, Read_ADC, Read_
ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv,
Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
#Define in_array Data_1

Dim in_array[2000] As Long
Dim array_idx As Long

Init :
array_idx = 1

Event :
Rem Measure inputs 3..4
ADC2_24(in_array, array_idx, 1)
array_idx = array_idx + 2
If (array_idx > 1992) Then array_idx = 1

array[] Array to hold the measurement values of the two
selected input channels.

ARRAY

LONG

array_idx Array element, which holds the first measurement
value.

LONG

channel_
group

Selected channel group:
0: Channels 1 and 2.
1: Channels 3 and 4.
2: Channels 5 and 6.
3: Channels 7 and 8.

LONG

Bit no. 31:24 23:16 15:6 5:0

Content 0 18-bit meas. value 0

voltage
measurement range

16777216
digits 8388608bipolar

ADwin-X-A20, Manual Sep. 2019 65

Analog Inputs and Outputs
ADC4_24

ADwin

ADC4_24ADC4_24 measures the voltages of 4 selected analog inputs (18 bit) and returns the
corresponding digital values in an array. The resolution of the return values is 24 bit.

Syntax

#Include ADwin-X.inc

ADC4_24(array[], array_idx)

Parameters

Notes

Each return value contains an 18 bit measurement value in bits 23:6; bits 5:0 are
always zero.

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

The conversion time is 2.86µs (added for all channels).

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels.
Example: The change from ADC8 to ADC4_24 takes 5µs + 2.86µs; the change
from ADC4_24(0) to ADC4_24(1) takes 2.86µs + 2.86µs.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC8_24, Read_ADC, Read_
ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv,
Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
#Define in_array Data_1

Dim in_array[2000] As Long
Dim array_idx As Long

Init :
array_idx = 1

Event :
Rem Measure inputs 1..4
ADC4_24(in_array, array_idx)
array_idx = array_idx + 4
If (array_idx > 1992) Then array_idx = 1

array[] Array to hold the measurement values of the four
selected input channels.

ARRAY

LONG

array_idx Array element, which holds the first measurement
value.

LONG

channel_
group

Selected channel group:
0: Channels 1…4.
1: Channels 5…8.

LONG

Bit no. 31:24 23:16 15:6 5:0

Content 0 18-bit meas. value 0

voltage
measurement range

16777216
digits 8388608bipolar

Analog Inputs and Outputs
ADC8_24

ADwin

66 ADwin-X-A20, Manual Sep. 2019

ADC8_24 ADC8_24 measures the voltages of the analog inputs 1…8 (18 bit) and returns the cor-
responding digital values in an array. The resolution of the return values is 24 bit.

Syntax

#Include ADwin-X.inc

ADC8_24(array[], array_idx)

Parameters

Notes

ADC8 returns eight digital values with 16 bit resolution.

Each return value contains an 18 bit measurement value in bits 23:6; bits 5:0 are
always zero.

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

The conversion time is 5µs (added for all channels).

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels.
Example: The change from ADC to ADC8_24 takes 1.25µs + 5µs.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, Read_ADC, Read_
ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv,
Start_Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
#Define in_array Data_1

Dim in_array[2000] As Long
Dim array_idx As Long

Init :
array_idx = 1

Event :
Rem Measure inputs 1..8
ADC8_24(in_array, array_idx)
array_idx = array_idx + 8
If (array_idx > 1992) Then array_idx = 1

array[] Array to hold the measurement values of the input
channels 1…8.

ARRAY

LONG

array_idx Array element, which holds the first measurement
value.

LONG

Bit no. 31:24 23:16 15:6 5:0

Content 0 18-bit meas. value 0

voltage
measurement range

16777216
digits 8388608bipolar

ADwin-X-A20, Manual Sep. 2019 67

Analog Inputs and Outputs
Read_ADC

ADwin

Read_ADCRead_ADC returns a converted value with 16-bit resolution from an A/D-converter.

Syntax

#Include ADwin-X.inc

ret_val = Read_ADC(channel)

Parameters

Notes

Read_ADC24 returns a converted value with 24-bit resolution.

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv,
Start_Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
Init:
Rem start conversion on channel 3, gain 1, single shot
Start_Conv(100b,0,1)

Event:
Wait_EOC() 'wait for end of conversion
Par_1 = Read_ADC(3) 'read value from channel 3
Rem start next conversion on channel 3
Start_Conv(100b,0,1)

channel Number (1…8) of the converter to read. LONG

ret_val Measurement value in digits (0…65535). LONG

voltage
measurement range

65536
digits 32768bipolar

Analog Inputs and Outputs
Read_ADC24

ADwin

68 ADwin-X-A20, Manual Sep. 2019

Read_ADC24 Read_ADC24 returns a converted value with 24-bit resolution from an A/D-converter.

Syntax

#Include ADwin-X.inc

ret_val = Read_ADC24(channel)

Parameters

Notes

Read_ADC returns a digital value with 16 bit resolution.

Each return value contains an 18-bit measurement value in bits 23:6; bits 5:0 are
always zero.

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from the returned digital value with the formula:

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC_Packed, Read_ADC8, Read_ADC8_24, Start_Conv, Start_
Conv_PGA, Wait_EOC

Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
Init:
Rem start conversion on channel 5, gain 2, single shot
Start_Conv(10000b,1,1)

Event:
Wait_EOC() 'wait for end of conversion
Par_1 = Read_ADC24(5) 'read value from channel 5
Rem start next conversion on channel 5
Start_Conv(10000b,1,1)

channel Number (1…8) of the converter to read. LONG

ret_val Measurement value in digits
(0…16777215 = 224-1).

LONG

Bit no. 31:24 23:16 15:6 5:0

Content 0 18-bit meas. value 0

voltage
measurement range

16777216
digits 8388608bipolar

ADwin-X-A20, Manual Sep. 2019 69

Analog Inputs and Outputs
Read_ADC_Packed

ADwin

Read_ADC_
Packed

Read_ADC_Packed returns the converted values of 2 channels as a packed value.

Syntax

#Include ADwin-X.Inc

ret_val = Read_ADC_Packed(ch_pair)

Parameters

Notes

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from a returned digital value with the formula:

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC24, Read_ADC8, Read_ADC8_24, Start_Conv, Start_Conv_
PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.Inc
Init:
Rem start conversion on channels 3+4
Start_Conv(1100b,0,1)

Event:
Wait_EOC() 'wait for end of conversion
Par_1 = Read_ADC_Packed(2)'read value from channels 3+4
Par_3 = Par_1 And 0FFFFh 'value channel 3
Par_4 = Shift_Right(Par_1,16) And 0FFFFh 'value channel 4
Rem start next conversion on channels 3+4
Start_Conv(1100b,0,1)

ch_pair Number (1…8) to select a channel pair:
1: Channels 1 and 2.
2: Channels 3 and 4.
3: Channels 5 and 6.
4: Channels 7 and 8.

LONG

ret_val 32 bit value holding 2 measurement values of 16 bit
(0…65535) each:
Bits 0…15: Value of channel n.
Bits 16…31: Value of channel n+1.

LONG

voltage
measurement range

65536
digits 32768bipolar

Analog Inputs and Outputs
Read_ADC8

ADwin

70 ADwin-X-A20, Manual Sep. 2019

Read_ADC8 Read_ADC8 returns converted values with 16-bit resolution from the analog inputs 1…8
in an array.

Syntax

#Include ADwin-X.inc

Read_ADC8(array[],array_idx)

Parameters

Notes

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from a returned digital value with the formula:

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8_24, Start_Conv, Start_
Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
Dim Data_1[2000] As Long
Dim data_idx As Long

Init:
Rem start conversion on channels 1..8
Start_Conv(0FFh,0,1)
data_idx = 1

Event:
Wait_EOC() 'wait for end of conversion
Read_ADC8(Data_1, data_idx)'read values
data_idx = data_idx + 8
If (data_idx > 1992) Then data_idx = 1
Rem start next conversion on channels 1..8
Start_Conv(0FFh,0,1)

array[] Array to hold the measurement values of the input
channels 1…8.

LONG

array_idx Array element, which holds the first measurement
value.

LONG

voltage
measurement range

65536
digits 32768bipolar

ADwin-X-A20, Manual Sep. 2019 71

Analog Inputs and Outputs
Read_ADC8_24

ADwin

Read_ADC8_24Read_ADC8_24 returns converted values with 24-bit resolution from the analog inputs
1…8 in an array.

Syntax

#Include ADwin-X.inc

Read_ADC8_24(array[],array_idx)

Parameters

Notes

With input voltage range −10V…+10V = 20V and gain factor 1, you can calcu-
late the measured voltage from a returned digital value with the formula:

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Start_Conv, Start_
Conv_PGA, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
Dim Data_1[2000] As Long
Dim data_idx As Long

Init:
Rem start conversion on channels 1..8
Start_Conv(0FFh,0,1)
data_idx = 1

Event:
Wait_EOC() 'wait for end of conversion
Read_ADC8_24(Data_1, data_idx)'read values
data_idx = data_idx + 8
If (data_idx > 1992) Then data_idx = 1
Rem start next conversion on channels 1..8
Start_Conv(0FFh,0,1)

array[] Array to hold the measurement values of the input
channels 1…8.

LONG

array_idx Array element, which holds the first measurement
value.

LONG

voltage
measurement range

16777216
digits 8388608bipolar

Analog Inputs and Outputs
Start_Conv

ADwin

72 ADwin-X-A20, Manual Sep. 2019

Start_Conv Start_Conv starts the conversion of selected A/D converters for a single shot or con-
tinuous conversion.

Syntax

#Include ADwin-X.inc

Start_Conv(adc_pattern, gain, mode)

Parameters

Notes

With X-A20M1, only a single bit may be set in adc_pattern; parameter gain
is ignored and the gain factor is always set to 1 (±10V).

We recommend using the binary representation (suffix "b") for adc_pattern.
It shows the allocation of bits to channel groups more clearly than decimal or he-
xadecimal representations, which can still be used if desired.

The conversion time (added for all channels) depends on th enumber of mea-
sured channels:

• 1 channel: max. 800kHz = 1.25µs.
• 2 channels: max. 550kHz = 1.82µs.
• 3 channels: max. 425kHz = 2.35µs.
• 4 channels: max. 350kHz = 2.86µs.
• 5 channels: max. 300kHz = 3.3µs.
• 6 channels: max. 250kHz = 4.0µs.
• 7 channels: max. 225kHz = 4.44µs.
• 8 channels: max. 200kHz = 5.0µs.

Please note with X-A20F: If you select different channels with a conversion in-
struction (ADC… / Start_Conv) than with the previous conversion instruction, the
conversion time is extended: With the change, the conversion is processed
twice, once with the previously selected channels and once with the newly se-
lected channels.
Example: The change from ADC4 to Start_Conv(111b,…) takes 2.86µs +
2.35µs; the change from Start_Conv(11b,…) to Start_Conv(101b,…)
takes 1.82µs + 1.82µs.

Use Start_Conv_PGA (X-A20Fonly) to set different gain factors for all chan-
nels.

With continuous mode, the selected ADCs are continuously running conversi-
ons and providing measurement values. After the first start of continuous mode,
you must check for the end of conversion with Wait_EOC once. Afterwards, you
can read the most recent measurement values with Read_ADC… instructions.

All ADC instructions set the operating mode single shot and therefore end a con-
tinuous conversion.

You can also start a conversion with Sync_All.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24,
Start_Conv_PGA, Wait_EOC, Sync_All

adc_
pattern

Bit pattern that specifies, which converter/s should be
started (only bits 0…7 can be used):
Bit=1: start conversion.
Bit=0: do not start conversion.

LONG

gain Gain factor:
0: Factor = 1, voltage range -10V…+10V.
1: Factor = 2, voltage range -5V…+5V.

LONG

mode Operating mode of conversion:
1: Single shot.
2: Mode "continuous", continuous conversion.

LONG

Bit no. in
adc_pattern

31:8 7 6 5 4 3 2 1 0

ADC number – 8 7 6 5 4 3 2 1

ADwin-X-A20, Manual Sep. 2019 73

Analog Inputs and Outputs
Start_Conv

ADwin
Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
Dim Data_3[2000] As Long
Dim data_idx As Long

Init:
Rem start continuous conversion with ADC 3, gain 1
Start_Conv(00000100b, 0, 2)
Rem check for end of conversion once
Wait_EOC()
data_idx = 1

Event:
Data_3[data_idx] = Read_ADC(3)
data_idx = data_idx + 1
If (data_idx > 1992) Then data_idx = 1
Rem Next conversion is started automatically

Analog Inputs and Outputs
Start_Conv_PGA

ADwin

74 ADwin-X-A20, Manual Sep. 2019

Start_Conv_PGA Start_Conv_PGA starts the conversion of selected A/D converters with individual gain
factors for a single shot or continuous conversion.

Syntax

#Include ADwin-X.inc

Start_Conv_PGA(adc_pattern, gain_pattern, mode)

Parameters

Notes

We recommend using the binary representation (suffix "b") for the bit patterns.
It shows the allocation of bits to channel groups more clearly than decimal or he-
xadecimal representations, which can still be used if desired.

The conversion time (added for all channels) depends on th enumber of mea-
sured channels:

• 1 channel: max. 800kHz = 1.25µs.
• 2 channels: max. 550kHz = 1.82µs.
• 3 channels: max. 425kHz = 2.35µs.
• 4 channels: max. 350kHz = 2.86µs.
• 5 channels: max. 300kHz = 3.3µs.
• 6 channels: max. 250kHz = 4.0µs.
• 7 channels: max. 225kHz = 4.44µs.
• 8 channels: max. 200kHz = 5.0µs.

If you select different channels with a conversion instruction (ADC… / Start_
Conv) than with the previous conversion instruction, the conversion time is ex-
tended: With the change, the conversion is processed twice, once with the pre-
viously selected channels and once with the newly selected channels. The same
applies if you change gain_pattern.
Example: The change from ADC4 to Start_Conv(111b,…) takes 2.86µs +
2.35µs; the change from Start_Conv(11b,…) to Start_Conv(101b,…)
takes 1.82µs + 1.82µs.

With continuous mode, the selected ADCs are continuously running conversi-
ons and providing measurement values. After the first start of continuous mode,
you must check for the end of conversion with Wait_EOC once. Afterwards, you
can read the most recent measurement values with Read_ADC… instructions.

All ADC instructions set the operating mode single shot and therefore end a con-
tinuous conversion.

See also

adc_
pattern

Bit pattern that specifies, which converters should be
started (only bits 0…7 can be used):
1: start conversion.
0: do not start conversion.

LONG

gain_
pattern

Bit pattern that specifies the gain factors for all convert-
ers. Each 2 bits set the factor for the ADC:
00b: Factor = 1, voltage range -10V…+10V.
01b: Factor = 2, voltage range -5V…+5V.
10b, 11b: reserved.

LONG

mode Operating mode of conversion:
1: Single shot.
2: Mode "continuous", continuous conversion.

LONG

Bit no. in
gain_
pattern

31:8 7 6 5 4 3 2 1 0

ADC number – 8 7 6 5 4 3 2 1

Bit no. in
gain_
pattern

31:8 15:14 13:12 11:10 9:8 7:6 5:4 3:2 1:0

ADC number – 8 7 6 5 4 3 2 1

ADwin-X-A20, Manual Sep. 2019 75

Analog Inputs and Outputs
Start_Conv_PGA

ADwin
ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24,
Start_Conv, Wait_EOC

Valid for

X-A20F

Example
#Include ADwin-X.inc
Dim Data_3[2000] As Long
Dim data_idx As Long

Init:
Rem start continuous conversion with ADC 1..8,
Rem gain 1 for channels 1..4, gain 2 for channels 5..8
Start_Conv_PGA(0FFh, 0101010100000000b, 2)
Rem check for end of conversion once
Wait_EOC()
data_idx = 1

Event:
Read_ADC8(Data_3, data_idx)'read 8 values
data_idx = data_idx + 8
If (data_idx > 1992) Then data_idx = 1
Rem Next conversion is started automatically

Analog Inputs and Outputs
Wait_EOC

ADwin

76 ADwin-X-A20, Manual Sep. 2019

Wait_EOC Wait_EOC waits for the end of conversion on the selected A/D converters.

Syntax

#Include ADwin-X.inc

Wait_EOC()

Parameters

- / -

Notes

ADC converters are selected for conversion with Start_Conv.

In single shot mode, Wait_EOC waits until all selected ADC have finished with
conversion.

In continuous mode, the end of conversion must be checked only once after hav-
ing started the first conversion.

See also

ADC, ADC2, ADC4, ADC8, ADC24, ADC2_24, ADC4_24, ADC8_24, Read_
ADC, Read_ADC24, Read_ADC_Packed, Read_ADC8, Read_ADC8_24,
Start_Conv, Start_Conv_PGA

Valid for

X-A20M1, X-A20F

Example
#Include ADwin-X.inc
Dim Data_3[2000] As Long
Dim data_idx As Long

Init:
Rem start continuous conversion with ADC 1..8, gain 1
Start_Conv(0FFh, 0, 2)
Rem check for end of conversion once
Wait_EOC()
data_idx = 1

Event:
Read_ADC8(Data_3, data_idx)'read 8 values
data_idx = data_idx + 8
If (data_idx > 1992) Then data_idx = 1
Rem Next conversion is started automatically

ADwin-X-A20, Manual Sep. 2019 77

Digital Inputs and OutputsADwin
16.3 Digital Inputs and Outputs

This section describes instructions to access digital channels:

– Conf_DIO (page 78)

– Digin_Filter_Init (page 87)

– Dig_Latch (page 79)

– Digin_Read_Latch1 (page 80)

– Digin_Read_Latch2 (page 81)

– Digout_Write_Latch1 (page 82)

– Digout_Write_Latch2 (page 83)

– Digin (page 84)

– Digin_Long1 (page 85)

– Digin_Long2 (page 86)

– Digin_Edge1 (page 88)

– Digin_Edge2 (page 89)

– Digout (page 90)

– Digout_Long1 (page 91)

– Digout_Long2 (page 92)

– Digout_Bits1 (page 93)

– Digout_Bits2 (page 94)

– Get_Digout_Long1 (page 95)

– Get_Digout_Long2 (page 96)

– Digin_Fifo_Read_Timer (page 97)

– Digin_Fifo_Clear (page 98)

– Digin_Fifo_Enable (page 99)

– Digin_Fifo_Full (page 100)

– Digin_Fifo_Read (page 101)

– Digout_Fifo_Read_Timer (page 102)

– Digout_Fifo_Clear (page 103)

– Digout_Fifo_Enable (page 104)

– Digout_Fifo_Empty (page 105)

– Digout_Fifo_Mode (page 106)

– Digout_Fifo_Start (page 107)

– Digout_Fifo_Write (page 108)

Digital Inputs and Outputs
Conf_DIO ADwin

78 ADwin-X-A20, Manual Sep. 2019

Conf_DIO Conf_DIO configures the digital channels DIO41:DIO00 in groups as inputs or outputs.

Syntax

#Include ADwin-X.Inc

Conf_DIO(pattern)

Parameters

Notes

The digital channels DIO41:DIO00 are initially configured as inputs after power-
up (and can then not yet be used as outputs). They can only be configured in
groups as inputs or outputs.

The digital channels DIO60:DIO42 are already configured as inputs and outputs
and cannot be changed with Conf_DIO. The digital channels are placed on 3
connectors.

We recommend using the binary representation (suffix "b"). It shows the alloca-
tion of bits to channel groups more clearly than decimal or hexadecimal repre-
sentations, which can still be used if desired.

See also

Conf_DIO, Digin_Filter_Init, Digin, Digout, Digin_Fifo_Enable, Digin_Fifo_
Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO15:00 as inputs and DIO41:16 as outputs
Conf_DIO(11111100b)

pattern Bit pattern that configures the digital channels as inputs
or outputs:
Bit=0: Channels as inputs.
Bit=1: Channels as outputs.

LONG

Bi t no . i n
pattern

7 6 5 4 3 2 1 0

channels DIO41 DIO40 DIO36 :
DIO39

DIO32 :
DIO35

DIO24 :
DIO31

DIO16 :
DIO23

DIO08 :
DIO15

DIO00 :
DIO07

ADwin-X-A20, Manual Sep. 2019 79

Digital Inputs and Outputs
Dig_LatchADwin

Dig_LatchDig_Latch transfers digital information from inputs to the input latches and from output
latches to the outputs.

Syntax

#Include ADwin-X.Inc

Dig_Latch(pattern)

Parameters

Notes

With digital inputs, the instructions reads the input signals into the input latches.
Read the values with Digin_Read_Latch1/2.

With digital outputs, the instruction passes the values of the output latches to the
outputs. Write values into the latch register with Digout_Write_Latch1/2.

You can also start the transfer with Sync_All.

See also

Conf_DIO, Digin_Read_Latch1, Digin_Read_Latch2, Digout_Write_Latch1,
Digout_Write_Latch2, Digin, Digout, Sync_All

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
REM Set channels DIO15:DIO00 as outputs, DIO31:DIO16 as inputs
Conf_DIO(0011b)
Digout_Write_Latch1(0) 'Set all output bits to 0

Event:
Dig_Latch(0101b) 'latch inputs and outputs DIO31:DIO00
Rem further program
Par_1 = Digin_Read_Latch1() 'read input bits and …
Digout_Write_Latch1(Par_1)'output in next event cycle

pattern Bit pattern to select groups of digital channels to be
latched.

LONG

Bit no. in
pattern

31:4 3 2 1 0

channels – outputs

DIO63:
DIO32

outputs

DIO31:
DIO00

inputs

DIO63:
DIO32

inputs

DIO31:
DIO00

Digital Inputs and Outputs
Digin_Read_Latch1 ADwin

80 ADwin-X-A20, Manual Sep. 2019

Digin_Read_
Latch1

Digin_Read_Latch1 returns the bits from the latch register for the digital inputs.

Syntax

#Include ADwin-X.Inc

ret_val = Digin_Read_Latch1()

Parameters

Notes

We recommend first programming the specified channels as inputs using Conf_
DIO.

The current status of the digital inputs can be transferred to the latch register
with the following instructions:

• Dig_Latch
• Sync_All

See also

Conf_DIO, Dig_Latch, Digin_Read_Latch2, Digout_Write_Latch1, Digout_
Write_Latch2, Digin, Digout, Sync_All

Valid for

X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
REM Set channels DIO15:DIO00 as outputs, DIO31:DIO16 as inputs
Conf_DIO(0011b)
Digout_Write_Latch1(0) 'Set all output bits to 0

Event:
Dig_Latch(0101b) 'latch inputs and outputs DIO31:DIO00
Rem further program
Par_1 = Digin_Read_Latch1() 'read input bits and …
Digout_Write_Latch1(Par_1)'output in next event cycle

ret_val Bit pattern. Each bit corresponds to a digital input (see
table).

LONG

Bit no
in ret_val

31 30 … 1 0

Input DIO31 DIO30 … DIO01 DIO00

ADwin-X-A20, Manual Sep. 2019 81

Digital Inputs and Outputs
Digin_Read_Latch2ADwin

Digin_Read_
Latch2

Digin_Read_Latch2 returns the bits from the latch register for the digital inputs
DIO60:DIO32.

Syntax

#Include ADwin-X.Inc

ret_val = Digin_Read_Latch2()

Parameters

Notes

We recommend first programming the specified channels as inputs using Conf_
DIO.

The current status of the digital inputs can be transferred to the latch register
with the following instructions:

• Dig_Latch
• Sync_All

See also

Conf_DIO, Dig_Latch, Digin_Read_Latch1, Digin_Read_Latch2, Digout_
Write_Latch1, Digout_Write_Latch2, Digin, Digout, Sync_All

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
REM Set channels DIO39:DIO32 as outputs
Conf_DIO(110000b)
Digout_Write_Latch2(0) 'Set all output bits to 0

Event:
Dig_Latch(1010b) 'latch inputs and outputs 32..63
Rem further program
Par_1 = Digin_Read_Latch2() 'read input bits and …
Digout_Write_Latch1(Par_1)'output in next event cycle

ret_val Bit pattern. Each bit corresponds to a digital input (see
table).

LONG

Bit no
in ret_val

31:29 28 27 … 1 0

Input – DIO60 DIO59 … DIO33 DIO32

Digital Inputs and Outputs
Digout_Write_Latch1 ADwin

82 ADwin-X-A20, Manual Sep. 2019

Digout_Write_
Latch1

Digout_Write_Latch1 writes a 32 bit value into the latch register for the digital out-
puts DIO31:DIO00.

Syntax

#Include ADwin-X.Inc

Digout_Write_Latch1(pattern)

Parameters

Notes

The specified channels must first be programmed as outputs using Conf_DIO.

You can set a single digital output directly with Digout.

See also

Conf_DIO, Dig_Latch, Digin_Read_Latch1, Digin_Read_Latch2, Digout_
Write_Latch1, Digout_Write_Latch2, Digin, Digout, Sync_All

Valid for

X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
REM Set channels DIO15:DIO00 as outputs, DIO31:DIO16 as inputs
Conf_DIO(0011b)
Digout_Write_Latch1(0) 'Set all output bits to 0

Event:
Dig_Latch(0101b) 'latch inputs and outputs DIO31:DIO00
Rem further program
Par_1 = Digin_Read_Latch1() 'read input bits and …
Digout_Write_Latch1(Par_1)'output in next event cycle

pattern Bit pattern. Each bit corresponds to a digital output (see
table).

LONG

Bit no
in ret_val

31 30 … 1 0

Output DIO31 DIO30 … DIO01 DIO00

ADwin-X-A20, Manual Sep. 2019 83

Digital Inputs and Outputs
Digout_Write_Latch2ADwin

Digout_Write_
Latch2

Digout_Write_Latch2 writes a 32 bit value into the latch register for the digital out-
puts DIO41:DIO32.

Syntax

#Include ADwin-X.Inc

Digout_Write_Latch2(pattern)

Parameters

Notes

The specified channels must first be programmed as outputs using Conf_DIO.

You can set a single digital output directly with Digout.

See also

Conf_DIO, Dig_Latch, Digin_Read_Latch1, Digin_Read_Latch2, Digout_
Write_Latch1, Digout_Write_Latch2, Digin, Digout, Sync_All

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
REM Set channels DIO39:DIO32 as outputs
Conf_DIO(110000b)
Digout_Write_Latch2(0) 'Set all output bits to 0

Event:
Dig_Latch(1010b) 'latch inputs and outputs 32..63
Rem further program
Par_1 = Digin_Read_Latch2() 'read input bits and …
Digout_Write_Latch1(Par_1)'output in next event cycle

pattern Bit pattern. Each bit corresponds to a digital output (see
table).

LONG

Bit no
in ret_val

31:10 9 8 … 1 0

Output – DIO41 DIO40 … DIO33 DIO32

Digital Inputs and Outputs
Digin ADwin

84 ADwin-X-A20, Manual Sep. 2019

Digin Digin returns the TTL level of a digital input DIO60:DIO00.

Syntax

#Include ADwin-X.inc

ret_val = Digin(channel_no)

Parameters

Notes

For any digital channel configured as output Digin has no function.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

The instruction is used to read the TTL levels of a few digital inputs. With more
digital inputs, the instructions Digin_Long1/2 are remarkably faster.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge1, Digin_Edge2, Digout,
Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc
Dim Data_1[10000] As Long As Fifo

Event:
Rem Check if input 0 has TTL level high
If (Digin(0) = 1) Then
Data_1 = ADC(1) 'read value of ADC 1

EndIf

channel_no Number (0…60) of digital input. LONG

ret_val TTL level of the selected input:
1: TTL level is high.
0: TTL level is low.

LONG

ADwin-X-A20, Manual Sep. 2019 85

Digital Inputs and Outputs
Digin_Long1ADwin

Digin_Long1Digin_Long1 returns the values of the digital inputs DIO31:DIO00.

Syntax

#Include ADwin-X.Inc

ret_val = Digin_Long1()

Parameters

Notes

For any digital channel configured as output Digin_Long1 will return an unde-
fined value.

Conf_DIO configures digital channels DIO31:DIO00 as inputs or outputs in
groups of 8.

See also

Conf_DIO, Digin_Long2, Digin_Edge1, Digin_Edge2, Digout, Digout_Long1,
Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO15:00 as inputs and DIO31:16 as outputs
Conf_DIO(1100b)

Event:
Par_1 = Digin_Long1()'read values of inputs (DIO15:00)

ret_val Bit pattern that corresponds to the TTL-levels at the
digital inputs (see table).
1: TTL-level high.
0: TTL-level low.

LONG

Bit number
in ret_val

31 30 … 1 0

Input DIO31 DIO30 … DIO01 DIO00

Digital Inputs and Outputs
Digin_Long2 ADwin

86 ADwin-X-A20, Manual Sep. 2019

Digin_Long2 Digin_Long2 returns the values of the digital inputs DIO60:DIO32.

Syntax

#Include ADwin-X.Inc

ret_val = Digin_Long2()

Parameters

Notes

For any digital channel configured as output Digin_Long2 will return an unde-
fined value.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

See also

Conf_DIO, Digin_Long1, Digin_Edge1, Digin_Edge2, Digout, Digout_Long2,
Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO15:00/DIO39:32 as inputs,
Rem and DIO31:16/DIO41:40 as outputs
Conf_DIO(11001100b)

Event:
Par_1 = Digin_Long1()'read inputs DIO15:00
Par_2 = Digin_Long2()'read inputs DIO39:32/DIO59:42

ret_val Bit pattern that corresponds to the TTL-levels at the
digital inputs (see table).
1: TTL-level high.
0: TTL-level low.

LONG

Bit number
in ret_val

31:29 28 27 … 1 0

Input – DIO60 DIO59 … DIO33 DIO32

ADwin-X-A20, Manual Sep. 2019 87

Digital Inputs and Outputs
Digin_Filter_InitADwin

Digin_Filter_InitDigin_Filter_Init sets the filter duration for all digital inputs.

Syntax

#Include ADwin-X.inc

Digin_Filter_Init(filter_value)

Parameters

Notes

The filter suppresses spikes of a signal. The number of spikes should be small
compared to the pulse width of the signal. The filter duration should be some-
what longer than the expected width of spikes.

The filter settings apply to all channels and also refer to the inputs of counters
and SSI decoders. Each channel has its own filter. After power-up all filters are
disabled.

The filter does not transfer an edge of the input signal directly to the output sig-
nal. According to the input signal, a counter is increased (High signal) or decre-
ased every 20ns, in the range of 0… filter_value. If the counter value is 0,
the output signal has level Low, at filter_value it is level High.

Please note: The filter delays edges of the resulting signal by the set filter dura-
tion. If spikes occur, edges may delay slightly in addition.

The plot shows filtering of 2 example signals (black line, top) with spikes. The
step line displays the filter counter values. In the right example, the resulting
edge is delayed by the spike. The filter (using filter_value = 6) delays edges
of the resulting signal; the delay Δt may increase according to the number of
spikes.

Please note: The input filter affects the time stamps for the edge detection unit
of an input FIFO (see Digin_Fifo_Read_Timer). With enabled input filter,
the time distance between two time stamps is an integer multiple of 20ns. In oth-
er words: there are either only even or only odd time stamps.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge1, Digin_Edge2, Cnt_Mode,
SSI_Mode, Digin_Fifo_Read_Timer

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Conf_DIO(0000b) 'Set DIO31:00 as inputs
Digin_Filter_Init(5) 'set spike filter to 100ns

Event:
Par_1 = Digin_Long1() 'Read inputs DIO31:00

filter_
value

Filter duration, given in units (1…65535) of 20ns.

The value 0 (zero) disables the filter.

LONG

t

Udigital

t

Udigital

t

UFilter

t

UFilter

tt

Digital Inputs and Outputs
Digin_Edge1 ADwin

88 ADwin-X-A20, Manual Sep. 2019

Digin_Edge1 Digin_Edge1 returns whether a positive or negative edge has occurred on digital
inputs DIO31:DIO00.

Syntax

#Include ADwin-X.inc

ret_val = Digin_Edge1(edge)

Parameters

Notes

A set bit in ret_val means, that a selected edge has been occurred at least
once at the digital input since the previous query. Bit for output channels always
return zero.

Conf_DIO configures digital channels DIO31:DIO00 as inputs or outputs in
groups of 8.

A query with Digin_Edge1 resets all bits to zero.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge2, Digin_Fifo_Enable,
Digin_Fifo_Read, Digout_Fifo_Read_Timer

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc

Init:
Conf_DIO(1100b) 'channels 15:0 as inputs

Event:
Rem check rising and falling edges, mask out outputs
Par_1 = Digin_Edge1(1) And 0Fh
Par_2 = Digin_Edge1(0) And 0Fh

Rem output edge changes to outputs
If (Par_1 + Par_2 > 0)Then
Digout_Bits1(Shift_Left(Par_1,16),Shift_Left(Par_2,16))

EndIf

edge Kind of detected edge:
1: Detect positive edge.
0: Detect negative edge.

LONG

ret_val Bit pattern where each bits represent an edge occurred
at an input. The mapping of bits to inputs is shown
below.
Bit = 1: An edge has occurred.
Bit = 0: No edge occurred.

LONG

Bit no. 31 30 … 2 1 0

Input DIO31 DIO30 … DIO02 DIO01 DIO00

ADwin-X-A20, Manual Sep. 2019 89

Digital Inputs and Outputs
Digin_Edge2ADwin

Digin_Edge2Digin_Edge2 returns whether a positive or negative edge has occurred on digital
inputs DIO60:DIO32.

Syntax

#Include ADwin-X.inc

ret_val = Digin_Edge2(edge)

Parameters

Notes

A set bit in ret_val means, that a selected edge has been occurred at least
once at the digital input since the previous query. Bit for output channels always
return zero.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

A query with Digin_Edge2 resets all bits to zero.

See also

Conf_DIO, Digin_Long1, Digin_Long2, Digin_Edge1, Digin_Fifo_Enable,
Digin_Fifo_Read, Digout_Fifo_Read_Timer

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
Rem Configure DIO15:00/DIO39:32 as inputs,
Rem and DIO31:16/DIO41:40 as outputs
Conf_DIO(11001100b)

Event:
Rem check rising and falling edges, mask out outputs
Par_1 = Digin_Edge2(1) And 0Fh
Par_2 = Digin_Edge2(0) And 0Fh

Rem output edge changes to outputs
If (Par_1 + Par_2 > 0)Then
Digout_Bits2(Shift_Left(Par_1,16),Shift_Left(Par_2,16))

EndIf

edge Kind of detected edge:
1: Detect positive edge.
0: Detect negative edge.

LONG

ret_val Bit pattern where each bits represent an edge occurred
at an input. The mapping of bits to inputs is shown
below.
Bit = 1: An edge has occurred.
Bit = 0: No edge occurred.

LONG

Bit no. 31:29 28 27 … 2 1 0

Input – DIO60 DIO59 … DIO34 DIO33 DIO32

Digital Inputs and Outputs
Digout ADwin

90 ADwin-X-A20, Manual Sep. 2019

Digout Digout sets a single output DIO41:DIO00 to the level "high" or "low".

Syntax

#Include ADwin-X.Inc

Digout(channel_no,level)

Parameters

Notes

For any digital channel configured as input Digout will have no effect.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

The digital channels are placed on three connectors.

The instruction is used to set the TTL levels of a few digital outputs. With more
digital outputs, the instructions Digout_Long1/2 are remarkably faster.

See also

Conf_DIO, Digin, Digout_Long1, Digout_Long2, Digout_Bits1, Digout_Bits2,
Get_Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_En-
able, Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO31:00 as outputs
Conf_DIO(1111b)
Par_2 = 0AAAAAAAAh 'Bit pattern for even bits

Event:
Digout(Par_2,1) 'set outputs to level high

channel_no Number (0…41) of the digital output DIO41:DIO00. LONG

level New status of the selected output:
0: Low level.
1: High level.

LONG

ADwin-X-A20, Manual Sep. 2019 91

Digital Inputs and Outputs
Digout_Long1ADwin

Digout_Long1Digout_Long1 sets or clears the TTL levels of outputs DIO31:DIO00 with a bit pattern.

Syntax

#Include ADwin-X.Inc

Digout_Long1(pattern)

Parameters

Notes

For any digital channel configured as input, Digout_Long1 will have no effect.

Conf_DIO configures digital channels DIO31:DIO00 as inputs or outputs in
groups of 8.

See also

Conf_DIO, Digin, Digout, Digout_Long2, Digout_Bits1, Digout_Bits2, Get_
Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable,
Digout_Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO15:00 as outputs and DIO31:16 as inputs
Conf_DIO(0011b)
Rem bit pattern for odd bits
Par_1 = 55555555h

Event:
Digout_Long1(Par_1) 'output bits DIO15:00

pattern Bit pattern that sets the TTL levels of digital outputs:
Bit = 0: Set output to level "low".
Bit = 1: Set output to level "high".

LONG

Bit number
in pattern

31 30 … 1 0

Output DIO31 DIO30 … DIO01 DIO00

Digital Inputs and Outputs
Digout_Long2 ADwin

92 ADwin-X-A20, Manual Sep. 2019

Digout_Long2 Digout_Long2 sets or clears the TTL levels of outputs DIO41:DIO32 with a bit pattern.

Syntax

#Include ADwin-X.Inc

Digout_Long2(pattern)

Parameters

Notes

For any digital channel configured as input, Digout_Long2 will have no effect.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Bits1, Digout_Bits2, Get_
Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable,
Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO39:32 as outputs
Conf_DIO(00110000b)
Rem bit pattern for odd bits
Par_2 = 0AAAAAAAAh

Event:
Digout_Long2(Par_2) 'output bits DIO39:32

pattern Bit pattern that sets the TTL levels of digital outputs:
Bit = 0: Set output to level "low".
Bit = 1: Set output to level "high".

LONG

Bit number
in pattern

31:10 9 8 … 1 0

Output – DIO41 DIO40 … DIO33 DIO32

ADwin-X-A20, Manual Sep. 2019 93

Digital Inputs and Outputs
Digout_Bits1ADwin

Digout_Bits1Digout_Bits1 sets some of the digital channels DIO31:DIO00 to a defined TTL level.

Syntax

#Include ADwin-X.Inc

Digout_Bits1(set,clear)

Parameters

Notes

For any digital channel configured as input, Digout_Bits1 will have no effect.

Conf_DIO configures digital channels DIO31:DIO00 as inputs or outputs in
groups of 8.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits2, Get_
Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable,
Digout_Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO15:00 as outputs and DIO31:16 as inputs
Conf_DIO(0011b)
Rem bit pattern for odd bits
Par_1 = 55555555h

Event:
Rem set odd bits to level high, leave even bits unchanged
Digout_Bits1(Par_1,0)

set Bit pattern to specify outputs, which are set to TTL level
High (see table).
1: set to TTL level high.
0: do not change TTL level.

LONG

clear Bit pattern to specify outputs, which are set to TTL level
Low (see table).
1: set to TTL level low.
0: do not change TTL level.

LONG

Bit number
in set/clear

31 30 … 1 0

Output DIO31 DIO30 … DIO01 DIO00

Digital Inputs and Outputs
Digout_Bits2 ADwin

94 ADwin-X-A20, Manual Sep. 2019

Digout_Bits2 Digout_Bits2 sets some of the digital channels DIO41:DIO32 to a defined TTL level.

Syntax

#Include ADwin-X.Inc

Digout_Bits2(set,clear)

Parameters

Notes

For any digital channel configured as input, Digout_Bits2 has no effect.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits1, Get_
Digout_Long1, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable,
Digout_Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
Rem Configure DIO39:32 as outputs
Conf_DIO(00110000b)
Rem bit pattern for even bits
Par_2 = 0AAAAAAAAh

Event:
Rem set even bits to level high, leave odd bits unchanged
Digout_Bits2(Par_1,0)

set Bit pattern to specify outputs, which are set to TTL level
High (see table).
1: set to TTL level high.
0: do not change TTL level.

LONG

clear Bit pattern to specify outputs, which are set to TTL level
Low (see table).
1: set to TTL level low.
0: do not change TTL level.

LONG

Bit number
in set/clear

31:10 9 8 … 1 0

Output – DIO41 DIO40 … DIO33 DIO32

ADwin-X-A20, Manual Sep. 2019 95

Digital Inputs and Outputs
Get_Digout_Long1ADwin

Get_Digout_
Long1

Get_Digout_Long1 returns the register contents of the digital outputs DIO31:DIO00.

Syntax

#Include ADwin-X.inc

ret_val = Get_Digout_Long1()

Parameters

Notes

The return value represents the status of the output register only. A read back
of physical output status is technically impossible.

For any digital channel configured as input, Get_Digout_Long1 will return an
undefined value. Conf_DIO configures digital channels DIO31:DIO00 as inputs
or outputs in groups of 8.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits1, Digout_
Bits2, Get_Digout_Long2, Digin_Fifo_Enable, Digout_Fifo_Enable, Digout_
Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc

Init:
REM Configure channels DIO31:00 as outputs
Conf_DIO(1111b)
Processdelay = 10000

Event:
Par_1 = Get_Digout_Long1()'read back bits 31:0

ret_val Contents (bit pattern) of the output register, bit alloca-
tion to outputs see table.
1: TTL-level high.
0: TTL-level low.

LONG

Bit no. in ret_val 31 30 … 1 0

Kanal DIO31 DIO30 … DIO01 DIO00

Digital Inputs and Outputs
Get_Digout_Long2 ADwin

96 ADwin-X-A20, Manual Sep. 2019

Get_Digout_
Long2

Get_Digout_Long2 returns the register contents of the digital outputs DIO41:DIO32.

Syntax

#Include ADwin-X.inc

ret_val = Get_Digout_Long2()

Parameters

Notes

The return value represents the status of the output register only. A read back
of physical output status is technically impossible.

For any digital channel configured as input, Get_Digout_Long2 will return an
undefined value. Conf_DIO configures digital channels DIO41:DIO00 as inputs
or outputs in groups. The channels DIO60:DIO42 are always configured as in-
puts.

See also

Conf_DIO, Digin, Digout, Digout_Long1, Digout_Long2, Digout_Bits1, Digout_
Bits2, Get_Digout_Long1, Digin_Fifo_Enable, Digout_Fifo_Enable, Digout_
Fifo_Write

Valid for

X-A20, X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
Rem Configure DIO39:32 as outputs
Conf_DIO(00110000b)
Processdelay = 10000

Event:
Par_1 = Get_Digout_Long2()'read back bits DIO39:32

ret_val Contents (bit pattern) of the output register, bit alloca-
tion to outputs see table.
1: TTL-level high.
0: TTL-level low.

LONG

Bit number
in ret_val

31:10 9 8 … 1 0

Output – DIO41 DIO40 … DIO33 DIO32

ADwin-X-A20, Manual Sep. 2019 97

Digital Inputs and Outputs
Digin_Fifo_Read_TimerADwin
Digin_Fifo_Read_
Timer

Digin_Fifo_Read_Timer returns the current status of the 100MHz timer.

Syntax

#Include ADwin-X.inc

ret_val = Digin_Fifo_Read_Timer(fifo_no)

Parameters

Notes

The timer is used to provide time stamps for the edge detection unit, see
Digin_Fifo_Enable.

The timer value is increased every 10ns by 1, so the timer will reach the original

timer value after about 43 seconds (= 10ns × 232). For comparison of time this
"overflow" must be considered, so the timer value must be queried regularly in
the program before a overflow has happened.

Please note: If the input filter (see Digin_Filter_Init) is enabled, the time
distance between two time stamps is an integer multiple of 20ns. In other words:
there are either only even or only odd time stamps.

The Fifo timers can be reset to zero with Sync_All.

See also

Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Clear, Digin_Fifo_En-
able, Digin_Fifo_Full, Digin_Fifo_Read, Digout_Fifo_Read_Timer, Digout_
Fifo_Enable, Digin_Filter_Init, Sync_All

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc
Rem provide number of counter overflows
#Define count_overflow Par_1
Dim t_start, diff_new, diff_old As Long

Init:
count_overflow = 0 'overflow occurs every 43 seconds
t_start = Digin_Fifo_Read_Timer()
diff_old = 0

Event:
Rem Event section must be run at least once every 20 seconds.
Rem Else you will miss counter overflows.

Rem get timer difference
diff_new = Digin_Fifo_Read_Timer() - t_start
If ((diff_new > 0) And (diff_old < 0)) Then
Inc(count_overflow) 'increase number of counter overflows

EndIf
diff_old = diff_new

related examples see

– ADbasic example seconds_timer.bas in folder
C:\ADwin\ADbasic\samples_ADwin: seconds_timer.bas

fifo_no Number (1, 2) of the input FIFO for edge detection. LONG

ret_val Current value (-231-1 … 231) of the 100MHz timer. LONG

Digital Inputs and Outputs
Digin_Fifo_Clear ADwin

98 ADwin-X-A20, Manual Sep. 2019

Digin_Fifo_Clear Digin_Fifo_Clear clears the FIFO of the edge detection unit.

Syntax

#Include ADwin-X.inc

Digin_Fifo_Clear(fifo_no)

Parameters

Notes

The input FIFO 1 refers to the digital inputs DIO31:DIO00, the input FIFO 2 re-
fers to digital inputs DIO60:DIO32.

The input FIFOs can also be cleared with Sync_All.

See also

Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer, Digin_Fifo_
Enable, Digin_Fifo_Full, Digin_Fifo_Read, Digout_Fifo_Clear, Digout_Fifo_En-
able, Sync_All

Valid for

X-A20+DCT

Example

see Digin_Fifo_Enable

fifo_no Number (1, 2) of the input FIFO for edge detection. LONG

ADwin-X-A20, Manual Sep. 2019 99

Digital Inputs and Outputs
Digin_Fifo_EnableADwin

Digin_Fifo_
Enable

Digin_Fifo_Enable determines, which input channels the edge detection unit will
monitor.

Syntax

#Include ADwin-X.inc

Digin_Fifo_Enable(fifo_no,pattern)

Parameters

Notes

The input FIFO 1 refers to the digital inputs DIO31:DIO00, the input FIFO 2 re-
fers to digital inputs DIO60:DIO32.

Only input channels can be monitored. The channels are programmed as inputs
or outputs with Conf_DIO.

The edge detection unit checks every 10ns, if an edge has occurred at the se-
lected input channels or if a level has been changed. If an edge has occurred,
a pair of values is copied into an internal FIFO array:

• Value 1 contains the level status of all channels as bit pattern.
• Value 2 contains a time stamp, which is the current value of a 100MHz timer.

The FIFO array may contain 511 value pairs (level status and time stamp) in
maximum. If and as long as the FIFO array is filled completely, any additional
value pair cannot be saved and will thus be lost.

See also

Conf_DIO, Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer,
Digin_Fifo_Clear, Digin_Fifo_Full, Digin_Fifo_Read, Digout_Fifo_Enable

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc

Dim Data_1[10000], Data_2[10000] As Long
Dim i, num, index As Long

Init:
Conf_DIO(1100b) 'channels 15:0 as inputs
Digin_Fifo_Enable(1,0) 'edge control off
Digin_Fifo_Clear(1) 'clear FIFO 1
Digin_Fifo_Enable(1,101010b)'control channels 1,3,5
index = 1

Event:
num = Digin_Fifo_Full(1) 'get number of value pairs
If (num > 0) Then
If (index + num > 10000) Then index = 1
Rem read value pairs
For i = 1 To num
 Digin_Fifo_Read(1,Data_1[index], Data_2[index])
 index = index+1
Next i

EndIf

fifo_no Number (1, 2) of the input FIFO for edge detection. LONG

pattern Bit pattern to select the input channels to be monitored. LONG

Bit no. FIFO 1 31 30 … 2 1 0

DIO input DIO31 DIO30 … DIO02 DIO01 DIO00

Bit no. FIFO 2 31:29 28 27 … 1 0

DIO input – DIO60 DIO59 … DIO33 DIO32

Digital Inputs and Outputs
Digin_Fifo_Full ADwin

100 ADwin-X-A20, Manual Sep. 2019

Digin_Fifo_Full Digin_Fifo_Full returns the number of saved value pairs in the FIFO of the edge
detection unit.

Syntax

#Include ADwin-X.inc

ret_val = Digin_Fifo_Full(fifo_no)

Parameters

Notes

The FIFO array may contain 511 value pairs (level status and time stamp) in
maximum. If and as long as the FIFO array is filled completely, any additional
value pair cannot be saved and will thus be lost.

See also

Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer, Digin_Fifo_
Clear, Digin_Fifo_Enable, Digin_Fifo_Read, Digout_Fifo_Enable, Digout_Fifo_
Empty

Valid for

X-A20+DCT

Example

see Digin_Fifo_Enable

fifo_no Number (1, 2) of the input FIFO for edge detection. LONG

ret_val Number (0…511) of saved value pairs in the FIFO. LONG

ADwin-X-A20, Manual Sep. 2019 101

Digital Inputs and Outputs
Digin_Fifo_ReadADwin

Digin_Fifo_ReadDigin_Fifo_Read reads one value pair from the FIFO of the edge detection unit and
returns them in 2 variables.

Syntax

#Include ADwin-X.inc

Digin_Fifo_Read(fifo_no, value_by_ref,
timestamp_by_ref)

Parameters

Notes

The input FIFO 1 refers to the digital inputs DIO31:DIO00, the input FIFO 2 re-
fers to digital inputs DIO60:DIO32.

Before reading you have to confirm with Digin_Fifo_Full, that there is at
least one value pair saved in the FIFO.

The passed parameters must be variables (or array elements), not constants.

The time difference between 2 level status patterns is the difference of the ap-
propriate time stamps, measured in units of 10ns:

See also

Conf_DIO, Digin, Digin_Edge1, Digin_Edge2, Digout, Digin_Fifo_Read_Timer,
Digin_Fifo_Clear, Digin_Fifo_Enable, Digin_Fifo_Full, Digout_Fifo_Enable

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc

Dim Data_1[10000], Data_2[10000] As Long
Dim index As Long

Init:
Conf_DIO(1100b) 'channels 15:0 as inputs
Digin_Fifo_Enable(1,0) 'edge control off
Digin_Fifo_Clear(1) 'clear FIFO
Digin_Fifo_Enable(1,10011b)'control channels 0,1,4
index = 1

Event:
If (Digin_Fifo_Full(1) > 0) Then
Rem read one value pair
Digin_Fifo_Read(1,Data_1[index], Data_2[index])
index = index + 1
If (index > 10000) Then index = 1

EndIf

fifo_no Number (1, 2) of the input FIFO for edge detection. LONG

value_by_
ref

Variable where the level status bit patterns are written.

Each level status bit corresponds to a digital input (see
table below).

LONG

CONST

timestamp_
by_ref

Variable where time stamps are written. LONG

CONST

Bit no. FIFO 1 31 30 … 2 1 0

DIO input DIO31 DIO30 … DIO02 DIO01 DIO00

Bit no. FIFO 2 31:29 28 27 … 1 0

DIO input – DIO60 DIO59 … DIO33 DIO32

t 10 ns stamp1 stamp2

Digital Inputs and Outputs
Digout_Fifo_Read_Timer ADwin

102 ADwin-X-A20, Manual Sep. 2019

Digout_Fifo_
Read_Timer

Digout_Fifo_Read_Timer returns the current value of a 100MHz counter.

Syntax

#Include ADwin-X.inc

ret_val = Digout_Fifo_Read_Timer(fifo_no)

Parameters

Notes

The counter is used for exact edge output timing at predefined points of time,
see Digout_Fifo_Write.

The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2
refers to digital outputs DIO60:DIO32.

The counter value can only be used in the FIFO operation mode with absolute
time values i.e. parameter mode = 1 in Digout_Fifo_Mode.

The timer value is increased by 1 every 10ns, so the timer will reach the original

timer value after about 43 seconds (=10ns × 232) ticks. For time comparison you
have to consider this "overflow", thus the counter value must be queried regu-
larly before an overflow happens.

The counter is set to zero with Digout_Fifo_Clear.

See also

Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Read_Timer,
Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_
Mode, Digout_Fifo_Start, Digout_Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc
Rem provide number of counter overflows
#Define count_overflow Par_1
Dim t_start, diff_new, diff_old As Long

Init:
count_overflow = 0 'overflow occurs every 43 seconds
t_start = Digout_Fifo_Read_Timer()
diff_old = 0

Event:
Rem Event section must be run at least once every 20 seconds.
Rem Else you will miss counter overflows.

Rem get timer difference
diff_new = Digout_Fifo_Read_Timer() - t_start
If ((diff_new > 0) And (diff_old < 0)) Then
Inc(count_overflow) 'increase number of counter overflows

EndIf
diff_old = diff_new

other examples see

– ADbasic example in folder
C:\ADwin\ADbasic\samples_ADwin: seconds_timer.bas

fifo_no Number (1, 2) of the output FIFO. LONG

ret_val Current value (-231-1 … 231) of the counter. LONG

ADwin-X-A20, Manual Sep. 2019 103

Digital Inputs and Outputs
Digout_Fifo_ClearADwin

Digout_Fifo_ClearDigout_Fifo_Clear stops the edge output and clears the edge output FIFO.

Syntax

#Include ADwin-X.inc

Digout_Fifo_Clear(fifo_no)

Parameters

Notes

Before first use, the FIFO must be cleared. Then, the FIFO can be filled with data
using Digout_Fifo_Write.

If the edge output has been stopped with Digout_Fifo_Clear, it can only be
started with Digout_Fifo_Start again.

The output FIFOs can also be cleared with Sync_All.

See also

Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Clear, Digout_Fifo_
Read_Timer, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_Mode,
Digout_Fifo_Start, Digout_Fifo_Write, Sync_All

Valid for

X-A20+DCT

Example

see Digout_Fifo_Mode

fifo_no Number (1, 2) of the output FIFO for edge output. LONG

Digital Inputs and Outputs
Digout_Fifo_Enable ADwin

104 ADwin-X-A20, Manual Sep. 2019

Digout_Fifo_
Enable

Digout_Fifo_Enable sets the output channels where edges are output.

Syntax

#Include ADwin-X.inc

Digout_Fifo_Enable(fifo_no,pattern)

Parameters

Notes

The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2
refers to digital outputs DIO60:DIO32.

Edges can only be output to output channels. The specified channels must be
first programmed as outputs using Conf_DIO.

Conf_DIO configures digital channels DIO41:DIO00 as inputs or outputs in
groups. The channels DIO60:DIO42 are always configured as inputs.

Digout_Fifo_Enable selects channels for edge output via output FIFO. The
levels of the other output channels–and only of these–can be set with instruc-
tions like Digout_Long.

The levels and points of time of egde output are set with Digout_Fifo_Write.

See also

Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Enable,
Digout_Fifo_Read_Timer, Digout_Fifo_Clear, Digout_Fifo_Empty, Digout_
Fifo_Mode, Digout_Fifo_Start, Digout_Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc
Dim Data_1[10000], Data_2[10000] As Long

Init:
Conf_DIO(1111b) 'channels 0:31 as outputs
Digout_Fifo_Clear(1) 'clear FIFO
Digout_Fifo_Enable(1,101010b)'edge output on channels 1,3,5
Rem write 3 value pairs into output FIFO and start output
Rem 100ns: channels 1,3,5
Rem 300ns: channels 1,3
Rem 500ns: channels 3,5
Digout_Fifo_Write(1,101010b,10)
Digout_Fifo_Write(1,001010b,30)
Digout_Fifo_Write(1,101000b,50)
Digout_Fifo_Start(1) 'clear FIFO

Event:
Rem write new value pairs into FIFO, if possible
If (Digout_Fifo_Empty(1) > 1) Then
Digout_Fifo_Write(1,100000b,1)

EndIf
If (Digout_Fifo_Empty(1) > 20) Then
Digout_Fifo_Write(1,101010b,10)
Digout_Fifo_Write(1,001010b,30)
Digout_Fifo_Write(1,101000b,50)

EndIf

fifo_no Number (1, 2) of the output FIFO for edge output. LONG

pattern Bit pattern to select the output channels for edge output. LONG

Bit no. FIFO 1 31 30 … 2 1 0

DIO output DIO31 DIO30 … DIO02 DIO01 DIO00

Bit no. FIFO 2 31:29 28 27 … 1 0

DIO output – DIO60 DIO59 … DIO33 DIO32

ADwin-X-A20, Manual Sep. 2019 105

Digital Inputs and Outputs
Digout_Fifo_EmptyADwin

Digout_Fifo_
Empty

Digout_Fifo_Empty returns the number of free value pairs in the edge output FIFO.

Syntax

#Include ADwin-X.inc

ret_value = Digout_Fifo_Empty(fifo_no)

Parameters

Notes

The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2
refers to digital outputs DIO41:DIO32.

The FIFO may contain 511 value pairs (level status and time stamp) in maxi-
mum.

See also

Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Full, Digout_Fifo_Read_
Timer, Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Mode, Digout_
Fifo_Start, Digout_Fifo_Write

Valid for

X-A20+DCT

Example

see Digout_Fifo_Mode

fifo_no Number (1, 2) of the output FIFO for edge output. LONG

ret_value Number (0…511) of free value pairs in the FIFO. LONG

Digital Inputs and Outputs
Digout_Fifo_Mode ADwin

106 ADwin-X-A20, Manual Sep. 2019

Digout_Fifo_
Mode

Digout_Fifo_Mode sets the FIFO operation mode of the edge output.

Syntax

#Include ADwin-X.inc

Digout_Fifo_Mode(fifo_no,mode)

Parameters

Notes

The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2
refers to digital outputs DIO41:DIO32.

Time stamps of an output FIFO set the time when an edge is output (see
Digout_Fifo_Write). The time stamp value can be defined with absolute or
relative reference:

• Absolute value: The time stamp refers to the starting time 0 of the 100MHz
counter (Digout_Fifo_Start).
Using this mode, the current counter value can be read with Digout_Fifo_
Read_Timer.

• Relative value: The time stamp is counted relative to the previous time
stamp.

The list of value pairs can be filled up–as long as there are any value pairs in the
FIFO.

See also

Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digout_Fifo_Read_Tim-
er, Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_
Start, Digout_Fifo_Write

Valid for

X-A20+DCT

Example
#Include ADwin-X.inc
Dim value[4] As Long

Init:
Processdelay = 6000 '6000 x 3.3 ns = 20µs
value[1] = 01b 'output value n
value[2] = 5000 ' with output time 50 µs (relative)
value[3] = 10b 'output value n+1
value[4] = 7000 ' with output time 70 µs (relative)
Conf_DIO(01111b) 'set DIO31:00 as output
Digout_Fifo_Mode(1,3) 'Set FIFO1 as relative output
Digout_Fifo_Clear(1) 'clear FIFO
Digout_Fifo_Enable(1,11b) 'Enable output channels 0+1
Rem write 2 value pairs into output FIFO and start output
Digout_Fifo_Write(1,value[1],value[2])
Digout_Fifo_Write(1,value[3],value[4])
Digout_Fifo_Start(01b)

Event:
Rem write new value pairs into FIFO, if possible
If (Digout_Fifo_Empty(1) >= 2) Then
Digout_Fifo_Write(1,value[1],value[2])
Digout_Fifo_Write(1,value[3],value[4])

EndIf

fifo_no Number (1, 2) of the output FIFO for edge output. LONG

mode Operation mode of the FIFO edge output:
1: Output FIFO with edge output, time values with

absolute reference.
3: Output FIFO with edge output, time values with rel-

ative reference.

LONG

ADwin-X-A20, Manual Sep. 2019 107

Digital Inputs and Outputs
Digout_Fifo_StartADwin

Digout_Fifo_StartDigout_Fifo_Start starts the edge output on selected output FIFOs.

Syntax

#Include ADwin-X.inc

Digout_Fifo_Start(fifo_pattern)

Parameters

Notes

After start of the edge output, the counter starts to count with 0. The counter is
used to do exact output timing, see Digout_Fifo_Write.

The timer value is increased by 1 every 10ns, so the timer will reach the original

timer value after about 43 seconds (=10ns × 232) ticks. For time comparison you
have to consider this "overflow", thus the counter value must be queried regu-
larly before an overflow happens. The counter runs at a clock rate of 100MHz.

You can also start the edge output with Sync_All.

See also

Digin, Digout, Digout_Bits1, Digout_Bits2, Digout_Fifo_Read_Timer, Digout_
Fifo_Clear, Digout_Fifo_Enable, Digout_Fifo_Empty, Digout_Fifo_Mode,
Digout_Fifo_Write, Sync_All

Valid for

X-A20+DCT

Example

see Digout_Fifo_Mode

fifo_
pattern

Bit pattern to access the FIFOs:
Bit = 0: Ignore FIFO.
Bit = 1: Start edge output on the FIFO.

LONG

Bits in fifo_pattern 31:2 1 0

FIFO number – 2 1

Digital Inputs and Outputs
Digout_Fifo_Write ADwin

108 ADwin-X-A20, Manual Sep. 2019

Digout_Fifo_Write Digout_Fifo_Write writes one value pair into the output edge FIFO.

Syntax

#Include ADwin-X.inc

Digout_Fifo_Write(fifo_no, level_pattern, timestamp)

Parameters

Notes

The output FIFO 1 refers to the digital outputs DIO31:DIO00, the output FIFO 2
refers to digital outputs DIO41:DIO32.

You must not write more value pairs into the FIFO than are free. The number of
free values in the FIFO is returned with Digout_Fifo_Empty.

The FIFO array may contain 511 value pairs (level status and time stamp) in
maximum. If and as long as the FIFO array is filled completely, no more value
pair can be written into.

The time stamp can be given with absolute or relative reference, see Dig_
Fifo_Mode. The difference between two output times must be at least 20ns.
The value of a time stamp is counted in processor clocks i.e. in units of 10ns.

The edge output runs like follows:
• The 100MHz counter is increased by 1 every 10ns.
• If the counter value equals the time stamp of the current value pair in the

FIFO, the bit pattern is output to the specified output channels.
• If a bit pattern has been output, the value pair is deleted from the FIFO.
• The value pairs are processed in the order as they were written into the

FIFO.

Therefore:

A time stamp defines the exact output time, and in time units of 10ns. The value
can be given in two ways:

• As absolute value in relation to the starting time of the 100MHz counter using
Digout_Fifo_Start.
A time stamp of 152 would have the appropriate bit pattern be output exactly
at 1.52µs after the 100MHz counter has started.

• As relative value, which is relative to the previous time stamp.
A time stamp of, 152 would have the appropriate bit pattern be output exactly
at 1.52µs after the previous pattern was output.

Time stamps must be stored in ascending order.

The FIFO must be filled with data early enough, so that the next output time is
located in the future. But if the FIFO runs empty anyway, please note:

• With absolute values, the time stamp must be greater than the current timer
value. Otherweise the edge output is "missed" and executed only after the
timer has run once around. (about 43 seconds).

• With relative values, the time stamp must be greater than the time period
since the previous pattern output (when the FIFO ran empty). If this fails, the
bit pattern is output immediately (but obviously with delay); the next time
stamp will then be relative to the delayed output time.

fifo_no Number (1, 2) of the output FIFO for edge output. LONG

level_
pattern

Bit pattern of level status to be output.
Bit=0: TTL level low.
Bit=1: TTL level high.

Each bit corresponds to a digital output (see table).

LONG

timestamp Time stamp (in steps of 10ns) referring to level_
pattern, which sets the time of output.

LONG

Bit no. FIFO 1 31 30 … 2 1 0

DIO output DIO31 DIO30 … DIO02 DIO01 DIO00

Bit no. FIFO 2 31:10 9 8 … 1 0

DIO output – DIO41 DIO40 … DIO33 DIO32

ADwin-X-A20, Manual Sep. 2019 109

Digital Inputs and Outputs
Digout_Fifo_WriteADwin

See also

Conf_DIO, Digin, Digout, Digout_Bits1, Digout_Bits2, Digin_Fifo_Enable,
Digout_Fifo_Read_Timer, Digout_Fifo_Clear, Digout_Fifo_Enable, Digout_
Fifo_Empty, Digout_Fifo_Mode, Digout_Fifo_Start

Valid for

X-A20+DCT

Example

see Digout_Fifo_Mode

Counter ADwin

110 ADwin-X-A20, Manual Sep. 2019

16.4 Counter

Dieser Abschnitt beschreibt folgende Befehle:

– Cnt_Clear (page 111)

– Cnt_Enable (page 112)

– Cnt_PW_Enable (page 113)

– Cnt_Get_Status (page 114)

– Cnt_Latch (page 116)

– Cnt_Mode (page 117)

– Cnt_Read (page 119)

– Cnt_PW_Latch (page 120)

– Cnt_Read_Int_Register (page 121)

– Cnt_Get_PW (page 122)

– Cnt_Get_PW_HL (page 123)

– Cnt_Read_Latch (page 124)

– Cnt_Sync_Latch (page 125)

– SSI_Mode (page 128)

– SSI_Read (page 129)

– SSI_Set_Bits (page 130)

– SSI_Set_Clock (page 131)

– SSI_Start (page 133)

– SSI_Status (page 134)

ADwin-X-A20, Manual Sep. 2019 111

Counter
Cnt_ClearADwin

Cnt_ClearCnt_Clear sets one or more up/down counters to zero, according to a bit pat-
tern.

Syntax

#Include ADwin-X.inc

Cnt_Clear(pattern)

Parameters

Notes

After Cnt_Clear has been executed the bit pattern is automatically reset to 0
(zero), so the counters start counting from 0.

Please pay attention to set Cnt_Mode parameter pattern to bit 1=0 for the ap-
propriate counters. Else, with bit 1=1, the counter inputs A, B have also to be set
to TTL level high, in order to clear the counter.

With Sync_All, you can set all 7 counters (and all 7 PWM counters) to zero at
the same time.

See also

Cnt_Enable, Cnt_Get_Status, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_Read_
Int_Register, Cnt_Read_Latch, Cnt_Sync_Latch, Sync_All

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_Enable(0) 'stop all counters
Cnt_Mode(2,0b) 'Counter 2 clock/direction
Cnt_Mode(3,0b) 'Counter 3 clock/direction
Cnt_Clear(110b) 'reset counters 2+3 to 0
Cnt_Enable(110b) 'start counters 2+3

Event:
Cnt_Latch(110b) 'latch counters 2+3
Par_1 = Cnt_Read_Latch(2)'read latch counter 2 and …
Par_2 = Cnt_Read_Latch(3)'latch counter 3

pattern Bit pattern to select counters.
Bit = 0: no influence.
Bit = 1: set counter to zero.

LONG

Bit no. 31:7 6 5 4 3 2 1 0

Counter no. – 7 6 5 4 3 2 1

Counter
Cnt_Enable ADwin

112 ADwin-X-A20, Manual Sep. 2019

Cnt_Enable Cnt_Enable disables or enables the up/down counters set by pattern, to
count incoming impulses.

Syntax

#Include ADwin-X.inc

Cnt_Enable(pattern)

Parameters

Notes

PWM counters are enabled or disabled with Cnt_PW_Enable.

With counters 1, 2, and 3, you must set the inputs as digital inputs with Conf_
DIO to make the counters work.

See also

Cnt_Clear, Cnt_Get_Status, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_Read_Int_
Register, Cnt_Read_Latch, Cnt_Sync_Latch, Cnt_Sync_Latch, Conf_DIO

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_Enable(0) 'stop all counters
Cnt_Mode(1,0b) 'counter 1 mode clock-direction
Cnt_Mode(2,0b) 'counter 1 mode clock-direction
Cnt_Clear(11b) 'reset counters 1+2 to 0
Cnt_Enable(11b) 'start counters 1+2

Event:
Cnt_Latch(11b) 'latch counters 1+2
Par_1 = Cnt_Read_Latch(1) 'read counter latch 1
Par_2 = Cnt_Read_Latch(2) 'read counter latch 2

pattern Bit pattern.
Bit = 0: stop counter.
Bit = 1: enable counter.

LONG

Bit no. 31:7 6 5 4 3 2 1 0

Counter no. – 7 6 5 4 3 2 1

ADwin-X-A20, Manual Sep. 2019 113

Counter
Cnt_PW_EnableADwin

Cnt_PW_EnableCnt_PW_Enable enables or disables the PWM counters selected by pattern.

Syntax

#Include ADwin-X.Inc

Cnt_PW_Enable(pattern)

Parameters

Notes

Up/down counters are started or stopped with Cnt_Enable.

The PWM counter input is set with Cnt_Mode.

See also

Cnt_Clear, Cnt_Get_Status, Cnt_Mode, Cnt_PW_Latch, Cnt_Read_Int_Regis-
ter, Cnt_Get_PW, Cnt_Get_PW_HL, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin_X.inc

Init:
Cnt_PW_Enable(0) 'stop all PW counters
Rem counters 1+2: mode clock/dir, PWM at input CLK
Cnt_Mode(1,0) 'counter 1: mode clock/dir, PWM input CLK
Cnt_Mode(2,0) 'counter 2: mode clock/dir, PWM input CLK
Cnt_PW_Enable(11b) 'start PWM counters 1+2

Event:
Cnt_PW_Latch(11b) 'latch PWM counters 1+2
Cnt_Get_PW_HL(1,Par_1,Par_2) 'read high/low time
Cnt_Get_PW(1,FPar_1,FPar_2)'read frequency and duty cycle

pattern Bit pattern
Bit = 0: Disable counter.
Bit = 1: Enable counter.

LONG

Bit no. 31:7 6 5 4 3 2 1 0

Counter no. – 7 6 5 4 3 2 1

Counter
Cnt_Get_Status ADwin

114 ADwin-X-A20, Manual Sep. 2019

Cnt_Get_Status Cnt_Get_Status returns the status register of one counter block.

Syntax

#Include ADwin-X.inc

ret_val = Cnt_Get_Status(counter_no)

Parameters

Notes

A line error (Lx) can only be detected at differential inputs! For TTL-inputs these
bits are always 0.

The status register is automatically reset by reading.

See also

Cnt_Enable, Cnt_Get_PW, Cnt_Mode, Cnt_Read

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

counter_no Counter block number: 1…7. LONG

ret_val Contents of status register: Hints for potential error
sources.

Meaning of bits 0…4 see table.

LONG

Bit no. 31:5 4 3 2 1 0

Signal – C L N B A

 - :don't care (signal status is not defined, mask out with 01Fh)
A: Signal A (static)
B: Signal B (static)
N: CLR-/LATCH input (static)
L: Line error (cable not connected or the line is broken)
C: Correlation error (signals A and B are identical, i.e. they are not
phase-shifted by approx. 90°)

ADwin-X-A20, Manual Sep. 2019 115

Counter
Cnt_Get_StatusADwin

Example
#Include ADwin-X.inc
Dim error As Long

Init:
Cnt_Enable(0) 'stop counter
Cnt_Mode(1,0) 'counter 1: mode clock/dir
Cnt_Clear(1b) 'reset counter 1 to 0
Cnt_Enable(1b) 'start counter 1
error = 0 'reset error flag

Event:
PAR_1 = Cnt_Read(1) 'read counter 1
PAR_2 = Cnt_GetStatus(1) And 11111b 'Status
REM line or cable error at counter 1?
If (PAR_2 AND 01000b = 01000b) Then
REM number of line/cable errors
Inc PAR_3
error = 1 'set error flag

EndIf
REM correlation error at counter 1?
If (PAR_2 And 10000b = 10000b) Then
Inc PAR_4 'number correlation errors
error = 1 'set error flag

EndIf
REM status input CLR
PAR_5 = Shift_Right(PAR_2 And 100b,2)
REM status input A
PAR_6 = Shift_Right(PAR_2 And 10b,1)
REM status input B
PAR_7 = PAR_2 And 1b

Counter
Cnt_Latch ADwin

116 ADwin-X-A20, Manual Sep. 2019

Cnt_Latch Cnt_Latch transfers the current counter values of one or more up/down coun-
ters into the relevant Latch A, depending on the bit pattern.

Syntax

#Include ADwin-X.inc

Cnt_Latch(pattern)

Parameters

Notes

After Cnt_Latch has been executed the bit pattern is automatically reset to 0
(zero).

The latch is read out into a variable with Cnt_Read_Latch command.

For PWM counters use Cnt_PW_Latch. In order to latch several counter values
synchronously, use Cnt_Sync_Latch.

See also

Cnt_Clear, Cnt_Enable, Cnt_Get_Status, Cnt_PW_Latch, Cnt_Mode, Cnt_
Read, Cnt_Read_Latch, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_Enable(0) 'stop all counters
Cnt_Mode(1,0b) 'counter 1 clock/direction
Cnt_Mode(2,0b) 'counter 2 clock/direction
Cnt_Clear(11b) 'reset counters 1+2 to 0
Cnt_Enable(11b) 'start counters 1+2

Event:
Cnt_Latch(11b) 'latch counters 1+2
Par_1 = Cnt_Read_Latch(1)'read latch counter 1
Par_2 = Cnt_Read_Latch(2)'read latch counter 2

pattern Bit pattern.
Bit = 0: no function.
Bit = 1: transfer counter values into the latch.

LONG

Bit no. 31:6 6 5 4 3 2 1 0

Counter no. – 7 6 5 4 3 2 1

ADwin-X-A20, Manual Sep. 2019 117

Counter
Cnt_ModeADwin

Cnt_ModeCnt_Mode defines the operating mode of one counter block.

Syntax

#Include ADwin-X.inc

Cnt_Mode(cnt_no,pattern)

Parameters

Notes

Please use Cnt_Mode only when the counter is disabled, see Cnt_Enable and
Cnt_PW_Enable.

With counters 1, 2, and 3, you must set the inputs as digital inputs with Conf_
DIO to make the counters work.

With standard clear mode (bit 1=0), the counter value is reset to zero as long as
TTL level high is given at the input. In order to clear the counter, the input CLR
must be enabled with bit 5=1.

If you want to clear a counter with Cnt_Clear set pattern bit 1=0. Else, with
bit 1=1, the counter inputs A, B have also to be set to TTL level high, in order to
clear the counter.

Plaese note: You can suppress spikes of incoming signals with Digin_
Filter_Init.

See also

Cnt_Clear, Cnt_Enable, Cnt_Get_Status, Digin_Filter_Init, Conf_DIO

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

cnt_no Counter block number: 1…7. LONG

pattern Bit pattern to set the operating mode of a counter. LONG

Bit no. Meaning

Bit 0 Up/down counter mode:
Bit = 0: mode clock/direction.
Bit = 1: mode A-B.

Bit 1 Clear mode. Signal condition, which clears the up/down
counter:
Bit = 0: TTL level high at input CLR.
Bit = 1: TTL level high at all inputs A, B, CLR. Available in

mode A-B only.

Bit 2 Invert input A / CLK in mode clock/direction:
Bit = 0: Input is not inverted.
Bit = 1: Input is inverted.

Bit 3 Invert input B / DIR in mode clock/direction:
Bit = 0: Input is not inverted.
Bit = 1: Input is inverted.

Bit 4 Set use of input CLR / LTC.
Bit = 0: CLR input: clear counter.
Bit = 1: LTC input: latch counter.

Bit 5 Enable input CLR / LTC.
Bit = 0: Input CLR / LTC is disabled.
Bit = 1: Input CLR / LTC is enabled.

Bit 6 Select edge for PWM counter.
Bit = 0: rising edge.
Bit = 1: falling edge.

Bits 7,8 Select input for PWM counter.
00b: Input A / CLK
01b: Input B / DIR
10b: Input CLR / LTC

Bits 31:9 reserved

Counter
Cnt_Mode ADwin

118 ADwin-X-A20, Manual Sep. 2019

Example
#Include ADwin-X.inc

Init:
Cnt_Enable(0) 'stop all counters
Cnt_Mode(1,0b) 'counter 1 clock/direction
Cnt_Mode(2,0b) 'counter 2 clock/direction
Cnt_Clear(11b) 'reset counters 1+2 to 0
Cnt_Enable(11b) 'start counters 1+2

Event:
Cnt_Latch(11b) 'latch counters 1+2
Par_1 = Cnt_Read_Latch(1) 'read latch counter 1
Par_2 = Cnt_Read_Latch(2) 'read latch counter 2

ADwin-X-A20, Manual Sep. 2019 119

Counter
Cnt_ReadADwin

Cnt_ReadCnt_Read transfers a current up/down counter value into Latch A and returns the
value.

Syntax

#Include ADwin-X.inc

ret_val = Cnt_Read(counter_no)

Parameters

Notes

Use the return value in calculations only with variables of the type Long (e.g. dif-
ferences or count direction).

See also

Cnt_Clear, Cnt_Enable, Cnt_Get_Status, Cnt_Latch, Cnt_Mode, Cnt_Read_
Latch, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_Enable(0) 'stop all counters
Rem Counter 1: Mode clock/direction, enable CLR
Cnt_Mode(1,100000b)
Rem Counter 2: Mode clock/direction, enable LATCH
Cnt_Mode(2,110000b)
Cnt_Clear(11b) 'reset counters 1+2
Cnt_Enable(11b) 'start counters 1+2

Event:
Par_1 = Cnt_Read(1)'read counter 1
Par_2 = Cnt_Read(2)'read counter 2

counter_no Up/down counter number: 1…7. LONG

ret_val Counter value. LONG

Counter
Cnt_PW_Latch ADwin

120 ADwin-X-A20, Manual Sep. 2019

Cnt_PW_Latch Cnt_PW_Latch copies the value of one or more PWM counters into a buffer.

Syntax

#Include ADwin-X.inc

Cnt_PW_Latch(pattern)

Parameters

Notes

The buffer is to be read with Cnt_Get_PW or Cnt_Get_PW_HL.

See also

Cnt_Clear, Cnt_PW_Enable, Cnt_Get_Status, Cnt_Mode, Cnt_Read_Int_Regi-
ster, Cnt_Get_PW, Cnt_Get_PW_HL, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_PW_Enable(0) 'stop all counters
Rem Counters 1+2: mode clock/dir, PWM input CLK
Cnt_Mode(1,0)
Cnt_Mode(2,0)
Cnt_PW_Enable(11b) 'start PWM counters 1+2

Event:
Cnt_PW_Latch(11b) 'latch counters 1+2
REM read high/low time
Cnt_Get_PW_HL(1,Par_1,Par_2)
REM read frequency/duty cycle
Cnt_Get_PW(1,FPar_1,FPar_2)

pattern Bit pattern.
Bit = 0: no function.
Bit = 1: transfer PWM counter value into a buffer.

LONG

Bit no. 31:6 6 5 4 3 2 1 0

Counter no. – 7 6 5 4 3 2 1

ADwin-X-A20, Manual Sep. 2019 121

Counter
Cnt_Read_Int_RegisterADwin
Cnt_Read_Int_
Register

Cnt_Read_Int_Register returns the content of a counter register.

Syntax

#Include ADwin-X.inc

ret_val = Cnt_Read_Int_Register(counter_no,reg_no)

Parameters

Notes

The registers above are assigned to each PWM counter. If PWM counters are
evaluated with standard instructions Cnt_Get_PW and Cnt_Get_PW_HL, no
further knowledge is required about PWM registers. Use the evaluation with
PWM registers for special solutions only.

Register contents are set with Cnt_PW_Latch or Cnt_Sync_Latch.

See also

Cnt_Get_PW, Cnt_Get_PW_HL, Cnt_PW_Latch, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example

see Cnt_Sync_Latch

counter_no Counter block number: 1…7. LONG

reg_no Key number (0…15) for a counter register, see below. LONG

ret_val Content of the counter register. LONG

reg_no Register

0 Latch 1 for positive edges.

1 Latch 2 for positive edges.

2 Latch 3 for positive edges.

3 Latch 1 for negative edges.

4 Latch 2 for negative edges.

5 Latch 3 for negative edges.

6 Software latch for VR counter.

7 Software latch for PWM counter.

8 Shadow register for Latch 1, positive edges.

9 Shadow register for Latch 2, positive edges.

10 Shadow register for Latch 3, positive edges.

11 Shadow register for Latch 1, negative edges.

12 Shadow register for Latch 2, negative edges.

13 Shadow register for Latch 3, negative edges.

14 Shadow register for software latch, VR counter.

15 Counter status.

Counter
Cnt_Get_PW ADwin

122 ADwin-X-A20, Manual Sep. 2019

Cnt_Get_PW Cnt_Get_PW returns frequency and duty cycle of a PWM counter.

Syntax

#Include ADwin-X.inc

Cnt_Get_PW(pwm_no,frequency,dutycycle)

Parameters

Notes

Use Cnt_PW_Latch first, to receive current values.

The return values are given in the parameters frequency and dutycycle.

See also

Cnt_Clear, Cnt_PW_Enable, Cnt_Get_Status, Cnt_Get_PW_HL, Cnt_Mode,
Cnt_PW_Latch, Cnt_Read_Int_Register, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_PW_Enable(0) 'stop all counters
Rem Counters 1+2: mode clock/dir, PWM input CLK
Cnt_Mode(1,0)
Cnt_Mode(2,0)
Cnt_PW_Enable(11b) 'start PWM counters 1+2

Event:
Cnt_PW_Latch(11b) 'latch counters 1+2
REM read high/low time
Cnt_Get_PW_HL(1,Par_1,Par_2)
Cnt_Get_PW_HL(2,Par_11,Par_12)
REM read frequency/duty cycle
Cnt_Get_PW(1,FPar_1,FPar_2)
Cnt_Get_PW(2,FPar_11,FPar_12)

pwm_no PWM counter number: 1…7. LONG

frequency Frequency in Hertz: 0,023 Hz …20MHz. FLOAT

CONST

dutycycle Duty cycle in percent: 0.0…100.0. FLOAT

CONST

ADwin-X-A20, Manual Sep. 2019 123

Counter
Cnt_Get_PW_HLADwin

Cnt_Get_PW_HLCnt_Get_PW_HL returns the high time and low time of a PWM counter.

Syntax

#Include ADwin-X.inc

Cnt_Get_PW_HL(counter_no,hightime,lowtime)

Parameters

Notes

Use Cnt_PW_Latch first, to receive current values.

The return values are given in the parameters hightime and lowtime.

See also

Cnt_Clear, Cnt_PW_Enable, Cnt_Get_Status, Cnt_Get_PW, Cnt_Mode, Cnt_
PW_Latch, Cnt_Read_Int_Register, Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_PW_Enable(0) 'stop all counters
Rem Counters 1+2: mode clock/dir, PWM input CLK
Cnt_Mode(1,0)
Cnt_Mode(2,0)
Cnt_PW_Enable(11b) 'start PWM counters 1+2

Event:
Cnt_PW_Latch(11b) 'latch counters 1+2
REM read high/low time
Cnt_Get_PW_HL(1,Par_1,Par_2)
Cnt_Get_PW_HL(2,Par_11,Par_12)
REM read frequency/duty cycle
Cnt_Get_PW(1,FPar_1,FPar_2)
Cnt_Get_PW(2,FPar_11,FPar_12)

counter_no PWM counter number: 1…7. LONG

hightime Pulse duration in units of 10ns: PWM high level time. LONG

CONST

lowtime Pulse period in units of 10ns: PWM low level time. LONG

CONST

Counter
Cnt_Read_Latch ADwin

124 ADwin-X-A20, Manual Sep. 2019

Cnt_Read_Latch Cnt_Read_Latch returns the value of a up/down counter’s latch.

Syntax

#Include ADwin-X.inc

ret_val = Cnt_Read_Latch(counter_no)

Parameters

Notes

Use the return value in calculations only with variables of the type Long (e.g. dif-
ferences or count direction).

See also

Cnt_Clear, Cnt_Enable, Cnt_Get_Status, Cnt_Latch, Cnt_Mode, Cnt_Read,
Cnt_Sync_Latch

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc

Init:
Cnt_Enable(0) 'stop all counters
Rem counter 2 clock/dir, enable latch input
Cnt_Mode(2,110000b)
Cnt_Clear(10b) 'reset counter 2 to 0
Cnt_Enable(10b) 'start counter 2

Event:
Par_10 = Cnt_Read_Latch(2) 'read counter latch 2

counter_no Counter number: 1…7. LONG

ret_val Content of counter latch. LONG

ADwin-X-A20, Manual Sep. 2019 125

Counter
Cnt_Sync_LatchADwin

Cnt_Sync_LatchCnt_Sync_Latch copies the contents of the selected up/down counters and PWM
counters into buffers.

Syntax

#Include ADwin-X.inc

Cnt_Sync_Latch(pattern)

Parameters

Notes

Each bit is assigned to both an up/down counter and a PWM counter. For each
set bit, both counter contents are copied simultaneously. The instruction there-
fore has the same function as Cnt_Latch and Cnt_PW_Latch together.

The buffers can be read e.g. with Cnt_Read_Latch or Cnt_Get_PW.

With Sync_All, you can latch all 7 counters and 7 PWM counters at the same
time.

See also

Cnt_Get_PW, Cnt_Latch, Cnt_Mode, Cnt_PW_Latch, Cnt_Read_Int_Register,
Cnt_Read_Latch, Sync_All

Valid for

X-A20+D, X-A20+DCT, X-A20+CO1

Example
#Include ADwin-X.inc
#Define frequency PAR_1
Dim time, edges As Long
Dim pw, oldpw As Long
Dim vr, oldvr As Long

Init:
Processdelay = 3000000 '200Hz with T12 processor
Cnt_Enable(0) 'counters off
Cnt_PW_Enable(0) 'PWM counters off
Cnt_Mode(1,00000000b) 'mode: clock/dir
Cnt_Clear(0001b) 'clear counter 1
Cnt_Enable(1b) 'enable V/R 1
Cnt_PW_Enable(1b) 'enable PWM 1
Cnt_Sync_Latch(0001b) 'latch counter 1 (V/R + PWM)
oldvr = Cnt_Read_Int_Register(1,6) 'V/R counter 1
oldpw = Cnt_Read_Int_Register(1,8) 'PWM counter 1
frequency = 0

Event:
Cnt_Sync_Latch(0001b) 'latch counter 1 (V/R + PWM)
vr = Cnt_Read_Int_Register(1,6) 'V/R counter 1
edges = Abs(vr - oldvr) 'number of edges between events
If (edges <> 0) Then
Rem get positive edges latch 1
pw = Cnt_Read_Int_Register(1,8)
time = pw - oldpw 'calculate time base
Rem frequency: 100000000=timer frequency of CNT module
frequency = edges * 100000000 / time
oldvr = vr 'store VR counter value
oldpw = pw 'store PW counter value

EndIf

pattern Bit pattern
Bit = 0: No function.
Bit = 1: Copy counter content into a buffer.

LONG

Bit no. 31:6 6 5 4 3 2 1 0

Counter no. – 7 6 5 4 3 2 1

Counter
Cnt_Sync_Latch ADwin

126 ADwin-X-A20, Manual Sep. 2019

ADwin-X-A20, Manual Sep. 2019 127

SSI interfaceADwin
16.5 SSI interface

This section describes instructions to access SSI decoders:

– SSI_Mode (page 128)

– SSI_Read (page 129)

– SSI_Set_Bits (page 130)

– SSI_Set_Clock (page 131)

– SSI_Set_Delay (page 132)

– SSI_Start (page 133)

– SSI_Status (page 134)

SSI interface
SSI_Mode ADwin

128 ADwin-X-A20, Manual Sep. 2019

SSI_Mode SSI_Mode sets the operation mode of the SSI decoder, either "single shot"
(read out once) or "continuous" (read out continuously).

Syntax

#Include ADwin-X.inc

SSI_Mode(pattern)

Parameters

Notes

If you select the mode "continuous", reading the encoder is started immediately.
SSI_Start is not necessary for this. With SSI_Set_Delay you set the time di-
stance between reading two consecutive encoder values.

Using the "continuous" mode, some encoder types occasionally return the
wrong counter value 0 (zero) instead of the corrct counter value. This error does
not occur with the "single shot" mode.

Plaese note: You can suppress spikes of incoming signals with Digin_
Filter_Init.

See also

SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_Start, SSI_Sta-
tus, Digin_Filter_Init

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
SSI_Set_Clock(200) 'clock rate = 125 kHz
SSI_Set_Bits(1,23) 'number of bits = 23
SSI_Mode(1) 'Continuous mode

Event:
Par_1 = SSI_Read(1) 'read position value

pattern Operation mode of the SSI decoder.
0: "Single shot" mode, the encoder is read out once.
1: "Continuous" mode, the encoder is read out conti-

nuously.

LONG

ADwin-X-A20, Manual Sep. 2019 129

SSI interface
SSI_ReadADwin

SSI_ReadSSI_Read returns the last saved counter value of the SSI counter.

Syntax

#Include ADwin-X.inc

ret_val = SSI_Read(dcdr_no)

Parameters

Notes

An encoder value is saved when the number of bits indicated by SSI_Set_
Bits are read.

In any case, the amount of bits is returned that is set before by SSI_Set_Bits,
even if this does not correspond to the resolution of the encoder.
If so, the returned counter value depends on the encoder (see documentation
of the manufacturer). Normally there are the following rules:

• If the encoder has a higher resolution, its exceeding least-significant bits are
not used.

• If the encoder has a lower resolution as indicated, a 0 (zero) is read for each
missing most-significant bit.

See also

SSI_Mode, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_Start, SSI_Sta-
tus

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc
Dim m, n, y As Long

Init:
SSI_Set_Clock(50) 'clock rate = 500 kHz
SSI_Set_Bits(1,23) 'number of bits = 23
SSI_Mode(1) 'Continuous mode

Event:
Par_1 = SSI_Read(1) 'read position value
REM If you have an encoder with Gray-code:
m = 0 'delete value of the last conversion
y = 0 ' -"-
For n = 1 To 32 'Check all 32 possible bits
m = (Shift_Right(Par_1,(32 - n)) And 1) XOr m
y = (Shift_Left(m,(32 - n))) Or y

Next n
Par_9 = y 'The result of the Gray/binary

'conversion in Par_9

dcdr_no Number (1) of the SSI decoder. LONG

ret_val Most recent counter value of the SSI decoder (= abso-
lute value position of the encoder).

LONG

SSI interface
SSI_Set_Bits ADwin

130 ADwin-X-A20, Manual Sep. 2019

SSI_Set_Bits SSI_Set_Bits sets the amount of bits of a SSI decoder, which generate a com-
plete encoder value.

The number of bits should be similar to the resolution of the encoder.

Syntax

#Include ADwin-X.inc

SSI_Set_Bits(dcdr_no, no_bits)

Parameters

Notes

The resolution (amount of bits) of the SSI encoder should be similar to the
amount of bits being transferred.

It is always expected to get that certain amount of bits for an encoder value that
was indicated before by SSI_Set_Bits, even if this does not correspond to the
resolution of the encoder.
In this case, the returned counter value depends on the encoder (see documen-
tation of the manufacturer). Normally there are the following rules:

• If the encoder has a higher resolution, its exceeding least-significant bits are
not used.

• If the encoder has a lower resolution as indicated, a 0 (zero) is read for each
missing most-significant bit.

See also

SSI_Mode, SSI_Read, SSI_Set_Clock, SSI_Set_Delay, SSI_Start, SSI_Status

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
SSI_Set_Clock(50) 'CLK (Taktrate) = 500 kHz
SSI_Mode(1) 'set continuous mode
SSI_Set_Bits(1,10) '10 bits

Event:
Par_1 = SSI_Read(1) 'read value of decoder

dcdr_no Number (1) of the SSI decoder. LONG

no_bits Amount (1…32) of bits, which are to be read for the
encoder (corresponds to the encoder resolution).

LONG

ADwin-X-A20, Manual Sep. 2019 131

SSI interface
SSI_Set_ClockADwin

SSI_Set_ClockSSI_Set_Clock sets the clock rate (6.1kHz to 12.5MHz), with which the enco-
der is clocked.

Syntax

#Include ADwin-X.inc

SSI_Set_Clock(dcdr_no,prescale)

Parameters

Notes

After start-up of the module the default scale factor of 100 is used, correspond-
ing to 250kHz.

With scale factors above 4095, only the least-significant 12 bits are used as
scale factor.

The possible clock frequency depends on the length of the cable, cable type,
and the send and receive components of the encoder or decoder. Basically the
following rule applies: The higher the clock frequency the shorter the cable
length.

See also

SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Delay, SSI_Start, SSI_Status

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
SSI_Set_Clock(10) 'CLK (Taktrate) = 2.5 MHz
SSI_Set_Bits(1,10) '10 bits
SSI_Mode(1) 'set continuous mode

Event:
Par_1 = SSI_Read(1) 'read value of decoder

dcdr_no Number (1) of the SSI decoder. LONG

prescale Scale factor (2…4096) for setting the clock rate accor-
ding to the equation:
Clock rate = 25MHz / prescale.

LONG

SSI interface
SSI_Set_Delay ADwin

132 ADwin-X-A20, Manual Sep. 2019

SSI_Set_Delay SSI_Set_Delay sets the waiting time between reading two encoder values
for one SSI-decoder on the specified module.

Syntax

#Include ADwin-X.Inc

SSI_Set_Delay(dcdr_no,delay)

Parameters

Notes

The waiting time delay starts after an encoder value is read completely
and ends when the next encoder value starts being read.

After start-up of the module the default value of 1250 is used, corre-
sponding to 25µs.

See also

SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Mode, SSI_Start, SSI_Status

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.Inc

Init:
SSI_Set_Clock(50) 'CLK (clock rate) = 1 MHz
SSI_Set_Delay(1,400) 'waiting time 8µs for decoder 1
SSI_Set_Bits(1,10) '10 bits for decoder 1
SSI_Mode(1) 'Set continuous-mode

Event:
Par_1 = SSI_Read(1) 'Read position value decoder 1

dcdr_no Number (1, 2) of the SSI decoder whose waiting
time is to be set.

LONG

delay Waiting time (1…65535) in units of 20ns; the
selectable range is 20ns…1310.7µs

LONG

ADwin-X-A20, Manual Sep. 2019 133

SSI interface
SSI_StartADwin

SSI_StartSSI_Start starts the reading of the SSI encoder (only in mode "single shot").

Syntax

#Include ADwin-X.inc

SSI_Start(dcdr_no)

Parameters

Notes

In continuous mode, this instruction has no function, because the encoder val-
ues are nevertheless read out continuously.

An encoder value will be saved only when the amount of bits is read, which is
set by SSI_Set_Bits.

A complete encoder value is always transferred, even if the operation mode is
changing meanwhile.

You can also start reading the SSI encoder with Sync_All.

See also

SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_
Status, Sync_All

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
SSI_Set_Clock(250) 'CLK (Taktrate) = 100 kHz
SSI_Mode(1) 'set continuous mode
SSI_Set_Bits(1,23) '23 bits

Event:
SSI_Start(1) 'Read position value
Do : Until (SSI_Status(1) = 0)
Rem If position value is read completely, then …
Par_1 = SSI_Read(1) 'read position value

dcdr_no Number (1) of the SSI decoder. LONG

SSI interface
SSI_Status ADwin

134 ADwin-X-A20, Manual Sep. 2019

SSI_Status SSI_Status returns the current read-status on the speicified module for a spe-
cified decoder.

Syntax

#Include ADwin-X.inc

ret_val = SSI_Status(dcdr_no)

Parameters

Notes

Use the status query only in the SSI mode "single shot". In "continuous" mode,
querying the status is not useful.

See also

SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Set_Delay, SSI_
Start

Valid for

X-A20+D, X-A20+DCT

Example
#Include ADwin-X.inc

Init:
SSI_Set_Clock(250) 'CLK (Taktrate) = 100 kHz
SSI_Mode(1) 'set continuous mode
SSI_Set_Bits(1,23) '23 bits

Event:
SSI_Start(1) 'Read position value
Do : Until (SSI_Status(1) = 0)
Rem If position value is read completely, then …
Par_1 = SSI_Read(1) 'read position value

dcdr_no Number (1) of the SSI decoder. LONG

ret_val Read-status of the decoder:
0: Decoder is ready, that is a complete value was has

been read.
1: Decoder is reading an encoder value.

LONG

ADwin-X-A20, Manual Sep. 2019 135

CAN interfaceADwin
16.6 CAN interface

This section describes instructions, which apply to ADwin-X-A20:

– CAN_Msg (page 136)

– CAN_Init (page 137)

– CAN_Receive (page 138)

– CAN_RX_Set_Filter (page 140)

– CAN_Transmit (page 141)

CAN interface
CAN_Msg ADwin

136 ADwin-X-A20, Manual Sep. 2019

CAN_Msg CAN_Msg is a one-dimensional array consisting of 11 elements, where a CAN message
is set for sending or read after receiving.

Syntax

#Include ADwin-X.Inc

CAN_Msg[n] = value

oder

value = CAN_Msg[n]

Parameters

Notes

The array elements of CAN_Msg[] have the following function:

Enter the data bytes to be transferred, the byte number, and the messsage id
into the arrays Feld CAN_Msg[], before sending them with CAN_Transmit.
The time stamp has no effect for sending.

See also

CAN_Init, CAN_Receive, CAN_RX_Set_Filter, CAN_Transmit

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc
REM Sends a 32-bit FLOAT value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see example at CAN_Receive)
#Define pi 3.14159265
Dim i As Long

Init:
Rem initialize CAN Controller 1, Baud rate 10kBaud
Par_1 = CAN_Init(1,10000)
If (Par_1 <> 0) Then Exit

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_Float32ToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_Msg[4] = Par_1 And 0FFh 'assign LSB
For i = 1 To 3
CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And 0FFh

Next i
CAN_Msg[9] = 4 'message length in bytes
CAN_Msg[10] = 40 'ID

Event:
Rem send message, low priority, 11 bit-id
Par_2 = CAN_Transmit(1,0,0)

n Number of an array element (1… 11). LONG

value Expression the value (0...256) of which is written into or
read from the message object.

LONG

Element no. Content

CAN_Msg[1…8] CAN message from data bytes 1…8.

CAN_Msg[9] Number (0…8) of used data bytes.

CAN_Msg[10] ID of the CAN message
(11 bit or 29 bit).

CAN_Msg[11] Receive time stamp (16 bit).

ADwin-X-A20, Manual Sep. 2019 137

CAN interface
CAN_InitADwin

CAN_InitCAN_Init initializes the controller of a CAN interface.

Syntax

#Include ADwin-X.Inc

ret_val = CAN_Init(can_no, baudrate)

Parameters

Notes

The instruction executes the following actions:
• Reset (hardware reset of the CAN controller).
• Empty receive and send Fifo.
• Disable receive filters (see CAN_RX_Set_Filter).
• Set baud rate.

This instruction must be executed before you can access the CAN controller with
other instructions. We recommend initialization in section LowInit: or Init:.

See also

CAN_Msg, CAN_Receive, CAN_RX_Set_Filter, CAN_Transmit

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc

Init:
Rem initialize CAN Controller 1, Baud rate 50kBaud
Par_1 = CAN_Init(1,50000)
If (Par_1 <> 0) Then Exit

can_no Number (1, 2) of CAN interface. LONG

baudrate Baud rate of CAN controller in bit/second. LONG

ret_val Status of initialization:
-1: No CAN interface available.
0: Baud rate was set.
1: Invalid baud rate.

LONG

CAN interface
CAN_Receive ADwin

138 ADwin-X-A20, Manual Sep. 2019

CAN_Receive CAN_Receive returns whether a CAN message has been received in the FIFO of a
CAN controller.

If yes, the oldest message of the FIFO is copied to the array CAN_Msg[]and the iden-
tifier is returned.

Syntax

#Include ADwin-X.Inc

ret_val = CAN_Receive(can_no)

Parameters

Notes

You can read a received message only once, then the message is deleted from
the receive FIFO pf the CAN controller.

If more than 64 messages have been recieved without reading the messages
the oldest data in the input FIFO is overwritten and is lost. Therefore make sure,
that CAN messages are read faster than being received. A data loss is not indi-
cated.

The CAN id length (11 bit or 29 bit) is not returned.

With CAN_RX_Set_Filter you can determine to receive only CAN messages
with specified identifiers.

See also

CAN_Msg, CAN_Init, CAN_RX_Set_Filter, CAN_Transmit

Valid for

X-A20+COM

can_no Number (1, 2) of CAN interface. LONG

ret_val -1: No new CAN message in the FIFO.
>0: A new message has arrived, the value is the identifier

of the message object.

LONG

ADwin-X-A20, Manual Sep. 2019 139

CAN interface
CAN_ReceiveADwin

Example
#Include ADwin-X.Inc
REM If a new message with the correct identifier is received,
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit. (Sending a
REM float value see example of CAN_Transmit).
Dim n As Long
Dim valuePi As Float32

Init:
Par_1 = 0
Rem initialize CAN Controller 1, Baud rate 50kBaud
Par_1 = CAN_Init(1,50000)
If (Par_1 <> 0) Then Exit

Event:
REM If a message is received, the data is read and the identifier
REM saved to Par_9.
REM The data bytes are in the array CAN_MSG[].
PAR_9 = CAN_Receive(1)

If (Par_9 = 40) Then
REM New message with identifier 40
Par_1 = CAN_Msg[1] 'Read high-byte
For n = 2 To 4 'Combine with remaining 3 bytes to
 Par_1 = Shift_Left(Par_1,8) + CAN_Msg[n]'a 32-bit value
Next n
REM Convert bit pattern in Par_1 to data type Float32 and
REM assign to the variable FPar_1.
valuePi = Cast_LongToFloat32(Par_1)
FPar_1 = valuePi
Par_10 = CAN_Msg[11] 'time stamp (16 bit)

EndIfSending a float value see example of CAN_Transmit.

CAN interface
CAN_RX_Set_Filter ADwin

140 ADwin-X-A20, Manual Sep. 2019

CAN_RX_Set_
Filter

CAN_RX_Set_Filter sets a receive filter for CAN messages with a selected identifier.

Syntax

#Include ADwin-X.Inc

ret_val = CAN_RX_Set_Filter(channel, filter_no,
filter_enable, id, id_extend)

Parameters

Notes

We recommend initialization of filters in section LowInit: or Init:.

You can set and enable up to 4 receive filters for each CAN interface. As soon
as a CAN message has successfully passed one of the enabled filters, the value
is stored in the receive FIFO.

See also

CAN_Msg, CAN_Init, CAN_Receive, CAN_Transmit

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc

Init:
PAR_1 = 0
Rem initialize CAN Controller 1, Baud rate 50kBaud
Par_1 = CAN_Init(1,50000)
If (Par_1 <> 0) Then Exit
Rem Enable filter 3 of controller 1 with identifier 40
PAR_1 = CAN_RX_Set_Filter(1,3,1,40,0)

Event:
REM Check for a message, only identifier 40 is valid
PAR_9 = CAN_Receive(1)

channel Number (1, 2) of CAN interface.. LONG

filter_no Number (1…4) of filter. LONG

filter_
enable

Filter status:
0: Disable filter.
1: Enable filter.

LONG

id Identifier (0…211 or 0…229) of the CAN messages which
can be received.

LONG

id_extend Length of identifier id:
0: 11 bit.
1: 29 bit.

LONG

ret_val 0: Filter has been set.
<>0:Error while configuring filter.

LONG

ADwin-X-A20, Manual Sep. 2019 141

CAN interface
CAN_TransmitADwin

CAN_TransmitCAN_Transmit transmits the message in CAN_Msg to a CAN interface to be sent.

Syntax

#Include ADwin-X.Inc

CAN_Transmit(can_no, priority, id_extend)

Parameters

Notes

In order to send a message follow these steps:
• Enter a message into array CAN_MSG: Data bytes, number of data bytes, and

identifier. The time stamp has no function.
• Transmit the message to the CAN interface with CAN_Transmit.
• Check if the message has been transmitted correctly.

The CAN interface sends the message as soon as the message object has re-
ceived access rights to the CAN bus.

A high priority message is sent as very next message even when other message
(of normal priority) are already waiting in the output FIFO. Messages of normal
priority are sent in the order as they were transmitted to the output FIFO of the
CAN interface.

See also

CAN_Msg, CAN_Init, CAN_Receive, CAN_RX_Set_Filter

Valid for

X-A20+COM

can_no Number (1, 2) of CAN interface. LONG

priority Sending priority of the message:
0: Normal priority, message is sent via the output FIFO.
1: High priority, message is to be sent next.

LONG

id_extend Length of identifiers:
0: 11 bit.
1: 29 bit.

LONG

ret_val 0: Message is transmitted to CAN interface.
-1: Sending buffer is full, transmit message again later.

LONG

CAN interface
CAN_Transmit ADwin

142 ADwin-X-A20, Manual Sep. 2019

Example
#Include ADwin-X.Inc
REM Sends a 32-bit FLOAT value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see example at CAN_Receive)
#Define pi 3.14159265
Dim i As Long

Init:
Rem initialize CAN Controller 2, baud rate 50kBaud
Par_1 = CAN_Init(2,50000)
If (Par_1 <> 0) Then Exit

REM Enable message object 6 of controller 1
REM for sending with the identifier 40 (11 bit)
P2_En_Transmit(1,1,6,40,0)

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_Float32ToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_Msg[4] = Par_1 And 0FFh 'assign LSB
For i = 1 To 3
CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And 0FFh

Next i
CAN_Msg[9] = 4 'message length in bytes
CAN_Msg[10] = 40 'message id

Event:
Par_2 = CAN_Transmit(2,0,40)'send message with 11 bit id

Receiving a float value see example at CAN_Receive.

ADwin-X-A20, Manual Sep. 2019 143

CAN interface
CAN_TransmitADwin

Available Baud rates

Available Baud rates [Bit/s]

1000000.0000 888888.8889 800000.0000 727272.7273 666666.6667

615384.6154 571428.5714 533333.3333 500000.0000 470588.2353

444444.4444 421052.6316 400000.0000 380952.3810 363636.3636

347826.0870 333333.3333 320000.0000 307692.3077 296296.2963

285714.2857 266666.6667 250000.0000 242424.2424 235294.1176

222222.2222 210526.3158 205128.2051 200000.0000 190476.1905

181818.1818 177777.7778 173913.0435 166666.6667 160000.0000

156862.7451 153846.1538 148148.1481 145454.5455 142857.1429

140350.8772 133333.3333 126984.1270 125000.0000 123076.9231

121212.1212 117647.0588 115942.0290 114285.7143 111111.1111

106666.6667 105263.1579 103896.1039 102564.1026 100000.0000

98765.4321 95238.0952 94117.6471 90909.0909 88888.8889

87912.0879 86956.5217 84210.5263 83333.3333 81632.6531

80808.0808 80000.0000 78431.3725 76923.0769 76190.4762

74074.0741 72727.2727 71428.5714 70175.4386 69565.2174

68376.0684 67226.8908 66666.6667 66115.7025 64000.0000

63492.0635 62500.0000 61538.4615 60606.0606 60150.3759

59259.2593 58823.5294 57971.0145 57142.8571 55944.0559

55555.5556 54421.7687 53333.3333 52631.5789 52287.5817

51948.0519 51282.0513 50000.0000 49689.4410 49382.7160

48484.8485 47619.0476 47337.2781 47058.8235 46783.6257

45714.2857 45454.5455 44444.4444 43956.0440 43478.2609

42780.7487 42328.0423 42105.2632 41666.6667 41025.6410

40816.3265 40404.0404 40000.0000 39215.6863 38647.3430

38461.5385 38277.5120 38095.2381 37037.0370 36363.6364

36199.0950 35714.2857 35555.5556 35087.7193 34782.6087

34632.0346 34482.7586 34188.0342 33613.4454 33333.3333

33057.8512 32921.8107 32388.6640 32258.0645 32000.0000

31746.0317 31620.5534 31372.5490 31250.0000 30769.2308

30651.3410 30303.0303 30075.1880 29629.6296 29411.7647

29304.0293 29090.9091 28985.5072 28673.8351 28571.4286

28070.1754 27972.0280 27777.7778 27681.6609 27586.2069

27210.8844 27027.0270 26936.0269 26755.8528 26666.6667

26315.7895 26143.7908 25974.0260 25806.4516 25641.0256

25396.8254 25078.3699 25000.0000 24844.7205 24767.8019

24691.3580 24615.3846 24390.2439 24242.4242 24024.0240

23809.5238 23668.6391 23529.4118 23460.4106 23391.8129

23255.8140 23188.4058 22988.5057 22857.1429 22792.0228

22727.2727 22408.9636 22222.2222 22160.6648 22038.5675

21978.0220 21739.1304 21680.2168 21621.6216 21505.3763

21390.3743 21333.3333 21276.5957 21220.1592 21164.0212

21052.6316 20833.3333 20779.2208 20671.8346 20512.8205

20460.3581 20408.1633 20202.0202 20050.1253 20000.0000

19851.1166 19753.0864 19704.4335 19656.0197 19607.8431

19512.1951 19323.6715 19230.7692 19138.7560 19047.6190

CAN interface
CAN_Transmit ADwin

144 ADwin-X-A20, Manual Sep. 2019

18912.5296 18867.9245 18823.5294 18648.0186 18604.6512

18518.5185 18433.1797 18390.8046 18306.6362 18181.8182

18140.5896 18099.5475 18018.0180 17857.1429 17777.7778

17738.3592 17582.4176 17543.8596 17429.1939 17391.3043

17316.0173 17241.3793 17204.3011 17094.0171 17021.2766

16949.1525 16913.3192 16842.1053 16806.7227 16771.4885

16666.6667 16632.0166 16563.1470 16528.9256 16460.9053

16393.4426 16326.5306 16260.1626 16227.1805 16194.3320

16161.6162 16129.0323 16000.0000 15873.0159 15810.2767

15779.0927 15686.2745 15625.0000 15594.5419 15503.8760

15473.8878 15444.0154 15384.6154 15325.6705 15238.0952

15180.2657 15151.5152 15122.8733 15094.3396 15065.9134

15037.5940 15009.3809 14842.3006 14814.8148 14705.8824

14652.0147 14571.9490 14545.4545 14519.0563 14492.7536

14414.4144 14336.9176 14311.2701 14285.7143 14260.2496

14184.3972 14109.3474 14035.0877 13986.0140 13937.2822

13913.0435 13888.8889 13840.8304 13793.1034 13722.1269

13675.2137 13605.4422 13582.3430 13559.3220 13513.5135

13468.0135 13445.3782 13377.9264 13333.3333 13289.0365

13223.1405 13157.8947 13136.2890 13114.7541 13093.2897

13071.8954 13008.1301 12987.0130 12903.2258 12882.4477

12820.5128 12800.0000 12759.1707 12718.6010 12698.4127

12578.6164 12558.8697 12539.1850 12500.0000 12422.3602

12403.1008 12383.9009 12345.6790 12326.6564 12307.6923

12288.7865 12195.1220 12158.0547 12121.2121 12066.3650

12030.0752 12012.0120 11994.0030 11922.5037 11904.7619

11851.8519 11834.3195 11764.7059 11730.2053 11695.9064

11661.8076 11627.9070 11611.0305 11594.2029 11544.0115

11494.2529 11477.7618 11428.5714 11396.0114 11379.8009

11363.6364 11347.5177 11299.4350 11220.1964 11204.4818

11188.8112 11111.1111 11080.3324 11034.4828 11019.2837

10989.0110 10943.9124 10928.9617 10884.3537 10869.5652

10840.1084 10810.8108 10796.2213 10781.6712 10752.6882

10695.1872 10666.6667 10638.2979 10610.0796 10582.0106

10540.1845 10526.3158 10457.5163 10430.2477 10416.6667

10389.6104 10335.9173 10322.5806 10296.0103 10269.5764

10256.4103 10230.1790 10204.0816 10101.0101 10088.2724

10062.8931 10025.0627 10012.5156 10000.0000 9937.8882

9925.5583 9876.5432 9852.2167 9828.0098 9803.9216

9791.9217 9768.0098 9756.0976 9696.9697 9685.2300

9661.8357 9615.3846 9603.8415 9569.3780 9523.8095

9456.2648 9433.9623 9411.7647 9400.7051 9367.6815

9356.7251 9324.0093 9302.3256 9291.5215 9259.2593

9227.2203 9216.5899 9195.4023 9153.3181 9142.8571

9090.9091 9070.2948 9049.7738 9039.5480 9009.0090

8958.5666 8928.5714 8918.6176 8888.8889 8879.0233

Available Baud rates [Bit/s]

ADwin-X-A20, Manual Sep. 2019 145

CAN interface
CAN_TransmitADwin

8869.1796 8859.3577 8771.9298 8743.1694 8714.5969

8695.6522 8658.0087 8648.6486 8620.6897 8602.1505

8592.9108 8556.1497 8547.0085 8510.6383 8483.5631

8474.5763 8465.6085 8456.6596 8421.0526 8403.3613

8385.7442 8333.3333 8281.5735 8264.4628 8255.9340

8230.4527 8205.1282 8196.7213 8163.2653 8130.0813

8113.5903 8105.3698 8097.1660 8088.9788 8080.8081

8064.5161 8000.0000 7976.0718 7944.3893 7936.5079

7905.1383 7843.1373 7812.5000 7804.8780 7797.2710

7774.5384 7751.9380 7736.9439 7729.4686 7714.5612

7692.3077 7662.8352 7655.5024 7619.0476 7590.1328

7575.7576 7561.4367 7547.1698 7532.9567 7518.7970

7469.6545 7441.8605 7421.1503 7407.4074 7400.5550

7386.8883 7352.9412 7326.0073 7285.9745 7272.7273

7259.5281 7246.3768 7187.7808 7168.4588 7142.8571

7136.4853 7130.1248 7111.1111 7098.4916 7092.1986

7054.6737 7017.5439 6993.0070 6956.5217 6944.4444

6926.4069 6902.5022 6896.5517 6861.0635 6820.1194

6808.5106 6802.7211 6791.1715 6779.6610 6734.0067

6688.9632 6683.3751 6666.6667 6611.5702 6578.9474

6568.1445 6562.7564 6557.3770 6535.9477 6530.6122

6493.5065 6456.8200 6451.6129 6441.2238 6410.2564

6400.0000 6379.5853 6349.2063 6324.1107 6289.3082

6274.5098 6269.5925 6250.0000 6245.1210 6211.1801

6172.8395 6163.3282 6153.8462 6144.3932 6102.2121

6060.6061 6046.8632 6037.7358 5997.0015 5961.2519

5952.3810 5925.9259 5895.3574 5865.1026 5847.9532

5818.1818 5797.1014 5772.0058 5747.1264 5714.2857

5702.0670 5681.8182 5649.7175 5614.0351 5610.0982

5555.5556 5521.0490 5517.2414 5464.4809 5434.7826

5423.7288 5376.3441 5333.3333 5291.0053 5245.9016

5208.3333 5161.2903 5079.3651 5000.0000

Available Baud rates [Bit/s]

RSxxx Interface ADwin

146 ADwin-X-A20, Manual Sep. 2019

16.7 RSxxx Interface

This section describes instructions to access RSxxx interfaces of ADwin-X-A20-COM:

– RS_Read_FIFO (page 148)

– RS_Init (page 147)

– RS_Write_FIFO (page 149)

– RS_Write_FIFO_Full (page 150)

– RS_Write_FIFO_Empty (page 151)

ADwin-X-A20, Manual Sep. 2019 147

RSxxx Interface
RS_InitADwin

RS_InitRS_Init initializes one RSxxx interface.

The following parameters are set:
• Transfer rate in Baud
• Use of test bits
• Data length
• Amount of stop bits
• Transfer protocol (handshake)

Syntax

#Include ADwin-X.Inc

RS_Init(channel,baud,parity,bits,stop,
handshake)

Parameters

Notes

RS_Init is necessary before working first with the selected RSxxx interface, in
order to set the interface parameters. They must be identical to the remote sta-
tion, in order to verify a correct transfer.

See also

RS_Read_FIFO, RS_Write_FIFO, RS_Write_FIFO_Full, RS_Write_FIFO_
Empty

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc

Init:
Rem Initialize RSxxx interface 1: 9600 Baud, without parity,
Rem 8 data bits, 1 stop bit, hardware handshake.
RS_Init(1,9600,0,8,0,1)

channel Number of RSxxx interface (1). LONG

baud Transfer rate in Baud: 35 … 115.200. LONG

parity Use of test bits:
0: without parity bit.
1: even parity.
2: odd parity.

LONG

bits Amount of data bits (6…8). LONG

stop Amount of stop bits.
0: 1 stop bit.
1: 1½ stop bits.
2: 2 stop bits.

LONG

handshake Transfer protocol:
0: RS232, no handshake.

LONG

RSxxx Interface
RS_Read_FIFO ADwin

148 ADwin-X-A20, Manual Sep. 2019

RS_Read_FIFO RS_Read_Fifo reads a value from the input FIFO of the RSxxx interface.

Syntax

#Include ADwin-X.Inc

ret_val = RS_Read_Fifo(channel)

Parameters

Notes

The input FIFO can hold up to 64 values.

See also

RS_Init, RS_Write_FIFO, RS_Write_FIFO_Full, RS_Write_FIFO_Empty

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc

Init:
Rem Initialize RSxxx interface 1: 9600 Baud, without parity,
Rem 8 data bits, 1 stop bit, hardware handshake.
RS_Init(1,9600,0,8,0,1)

Event:
Rem Get a value from the FIFO. If the FIFO is empty,
Rem -1 is returned.
PAR_1 = RS_Read_Fifo(1)

channel Number of RSxxx interface (1). LONG

ret_val Contents of the input FIFO:
-1: FIFO is empty.
≥0: Transferred value (0…255).

LONG

ADwin-X-A20, Manual Sep. 2019 149

RSxxx Interface
RS_Write_FIFOADwin

RS_Write_FIFORS_Write_FIFO writes a value into the send-FIFO of the RSxxx interface.

Syntax

#Include ADwin-X.Inc

ret_val = RS_Write_FIFO(channel,value)

Parameters

Notes

The instruction checks first if there is at least one free memory cell in the
send-FIFO. If so, the transferred value is written into the FIFO (return value 0);
otherwise a 1 is returned, indicating that the FIFO is full and writing is not pos-
sible.

With RS_Write_FIFO_Full, you can check in advance if there is space in the
send FIFO. The send FIFO can hold up to 64 values.

See also

RS_Init, RS_Read_FIFO, RS_Write_FIFO_Full, RS_Write_FIFO_Empty

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc
Dim val As Long

INIT:
Rem Initialize RSxxx interface 1: 9600 Baud, without parity,
Rem 8 data bits, 1 stop bit, hardware handshake.
RS_Init(1,9600,0,8,0,1)

EVENT:
Rem If the FIFO is not full, [val] is written into the FIFO.
Rem Otherwise a 1 in Par_1 indicates that writing into the
Rem FIFO ist not possible (FIFO full).
PAR_1 = RS_Write_FIFO(1,val)

channel Number of RSxxx interface (1). LONG

value Value to be written into the send-FIFO. LONG

ret_val Status message:
0: Data are transferred successfully.
1: Data were not transferred, send-FIFO is full.

LONG

RSxxx Interface
RS_Write_FIFO_Full ADwin

150 ADwin-X-A20, Manual Sep. 2019

RS_Write_FIFO_
Full

RS_Write_FIFO_Full checks if the send FIFO of the RSxxx interface is already full.

Syntax

#Include ADwin-X.Inc

ret_val = RS_Write_FIFO_Full(channel)

Parameters

Notes

The send FIFO can hold up to 64 values.

See also

RS_Init, RS_Read_FIFO, RS_Write_FIFO, RS_Write_FIFO_Empty

Valid for

X-A20+COM

Example
#Include ADwin-X.Inc
Dim val As Long

Init:
Rem Initialize RSxxx interface 1: 9600 Baud, without parity,
Rem 8 data bits, 1 stop bit, hardware handshake.
RS_Init(1,9600,0,8,0,1)

Event:
Rem If the FIFO is not full, write [val] into the FIFO.
If (RS_Write_Fifo_Full(1) <> 1) Then
PAR_1 = RS_Write_Fifo(1,val)

EndIf

channel Number of RSxxx interface (1). LONG

ret_val Status if the send FIFO is full:
0: False, send FIFO is not full.
1: True, send FIFO is full.

LONG

ADwin-X-A20, Manual Sep. 2019 151

RSxxx Interface
RS_Write_FIFO_EmptyADwin
RS_Write_FIFO_
Empty

RS_Write_FIFO_Empty checks if the send FIFO of the RSxxx interface is empty.

Syntax

#Include ADwin-X.Inc

ret_val = RS_Write_FIFO_Empty(channel)

Parameters

Notes

The send FIFO can hold up to 64 values.

See also

RS_Init, RS_Read_FIFO, RS_Write_FIFO, RS_Write_FIFO_Full

Valid for

X-A20+COM

Example
#Include ADwin - X.Inc
#Define val Par_2

Init:
Rem Initialize RSxxx interface 1: 9600 Baud, without parity,
Rem 8 data bits, 1 stop bit, hardware handshake.
RS_Init(1,9600,0,8,0,1)

Event:
Rem If send FIFO is not full, write [val] into the FIFO.
If (RS_Write_Fifo_Full(1) <> 1) Then
PAR_1 = RS_Write_Fifo(1,val)

EndIf
Rem Wait until send FIFO is empty i.e. value was sent.
Do : Until (RS_Write_FIFO_Empty(1) = 1)

channel Number of RSxxx interface (1). LONG

ret_val Status if the send FIFO is empty:
0: False, send FIFO is not empty.
1: True, send FIFO is empty.

LONG

Profibus interface ADwin

152 ADwin-X-A20, Manual Sep. 2019

16.8 Profibus interface
This section describes instructions to access a Profibus node on ADwin-X-A20:

– Init_Profibus (page 153)

– Run_Profibus (page 155)

ADwin-X-A20, Manual Sep. 2019 153

Profibus interface
Init_ProfibusADwin

Init_ProfibusInit_Profibus initializes the Profibus slave.

Syntax

#Include ADwin-X.inc

ret_val = Init_Profibus(dev_adr, in_mod_cnt, out_mod_cnt,
work_arr[])

Parameters

Notes

This instruction must be processed before working with Profibus slave.

Init_Profibus should be processed in a program section with low priority,
because of the long processing time (about 2-3 seconds). Using the instruction
in a (non-interruptable) high priority process, the communication between PC
and ADwin system would be interrupted too long and thus produce an error mes-
sage (timeout).

Smaller data ranges accelerate the data transfer via the Profibus.

Station address and size of data ranges must equal the project settings of the
Profibus.

See also

Run_Profibus

Valid for

- / -

dev_adr Slave node address / station address (1…125) on the
Profibus.

LONG

in_mod_cnt Size (1, 2, 4, 8, 16, 32, 61) of the input area in the Pro-
fibus slave in double words.

LONG

out_mod_
cnt

Size (1, 2, 4, 8, 16, 32, 61) of the output area in the Pro-
fibus slave in double words.

LONG

work_arr[] Array to store data for operation of the Profibus Slave.
The array must have at least AB_WORK_ARR_LEN
(5000) elements.

ARRAY

LONG

ret_val Status of initialization:
0: initialization successful.
-1: Error, size of data ranges is wrong.

LONG

Profibus interface
Init_Profibus ADwin

154 ADwin-X-A20, Manual Sep. 2019

Example
#Include ADwin-X.inc
#Define node 2 'slave node address
#Define out_arr Data_2
#Define in_arr Data_3

Dim out_arr[1000] As Long
Dim in_arr[1000] As Long
Dim conf_arr[AB_WORK_ARR_LEN] As Long
Dim i As Long
Dim state As Long

LowInit:
Processdelay = 3000000 'set to 100 Hz
Rem init Profibus interface: input data area = 8 DWords
Rem and output data area = 16 DWords
Par_10 = Init_Profibus(node, 8, 16, conf_arr)

Event:
Rem set data in out_arr[] to be transferred
For i = 1 To 16
out_arr[i] = (out_arr[i] + i)

Next i

Rem send and read data
state = Run_Profibus(out_arr,in_arr,16,conf_arr)
Par_2 = state

Rem now process received data stored in in_arr[1..8];
Rem in_arr[9..16] has been filled with unusable data,
Rem in_arr[17..1000] remains unused here.

ADwin-X-A20, Manual Sep. 2019 155

Profibus interface
Run_ProfibusADwin

Run_ProfibusRun_Profibus exchanges data with the Profibus slave.

Syntax

#Include ADwin-X.inc

ret_val = Run_Profibus(out_pd_arr[], in_pd_arr[],
pd_arr_len, work_arr[])

Parameters

Notes

The number pd_arr_len is used for both reading and writing data, even
though the input area may be initialized with a different value than the output ar-
ea. The arrays in_pd_arr[] and out_pd_arr[] must be declared with at
least the size pd_arr_len.

Each array element in in_pd_arr[] and out_pd_arr[] contains 1 double
word. A double word equals a value of data type Long.

See also

Init_Profibus

Valid for

- / -

Example

see Init_Profibus

out_pd_
arr[]

Array, from which the Profibus slave reads data (num-
ber see pd_arr_len) and writes them to the Profibus.

ARRAY

LONG

in_pd_
arr[]

Array, into which the Profibus Slave writes data (num-
ber see pd_arr_len) which are read from the Profi-
bus.

ARRAY

LONG

pd_arr_len Number of double words (1, 2, 4, 8, 16, 32, 61), which
are transferred in in_pd_arr[] and out_pd_arr[].

LONG

work_arr[] Array holding data for operation of the Profibus Slave,
see Init_Profibus.

ARRAY

LONG

ret_val State of operation of the Profibus slave:
0: Initializing.
2: Slave waits for bus start by master..
4: Normal operation.

LONG

Profinet interface
Profinet interface ADwin

156 ADwin-X-A20, Manual Sep. 2019

16.9 Profinet interface
This section describes instructions to access a Profinet interface of ADwin-X-A20:

– Init_ProfinetIO (page 157)

– Run_ProfinetIO (page 158)

ADwin-X-A20, Manual Sep. 2019 157

Init_ProfinetIO
Init_ProfinetIOADwin

Init_ProfinetIOInit_ProfinetIO initializes an array for operation with the Profinet slave.

Syntax

#Include ADwin-X.inc

ret_val = Init_ProfinetIO(in_size, out_size, work_arr[])

Parameters

Notes

This instruction must be processed before working with Profinet slave.

The size of data areas must be the same as while projecting the Profinet. Please
note while projecting, that the size of data areas may be given in other units than
byte (e.g. Word, QWord).

See also

Run_ProfinetIO

Valid for

- / -

Example
#Include ADwin-X.inc
#Define out_arr Data_2
#Define in_arr Data_3

Dim out_arr[76] As Long
Dim in_arr[76] As Long
Dim conf_arr[AB_WORK_ARR_LEN] As Long
Dim i As Long
Dim state As Long

LowInit:
Processdelay = 3000000 'set to 100 Hz
Rem init Profinet interface: input data area = 128 DWords
Rem and output data area = 256 DWords
Par_10 = Init_ProfinetIO(128, 256, conf_arr)

Event:
Rem set data in out_arr[] to be transferred
For i = 1 To 76
out_arr[i] = (out_arr[i] + i)

Next i

Rem send and read data
state = Run_ProfinetIO(out_arr,in_arr,256,conf_arr)
Par_2 = state

Rem now process received data in in_arr[] ..

in_size Size (1, 2, 4, 8, 16, 32, 64, 128, 196, 256, 320) of the
input area in the Profinet slave, in double words; 1 dou-
ble word = 4 byte.

LONG

out_size Size (1, 2, 4, 8, 16, 32, 64, 128, 196, 256, 320) of the
output area in the Profinet slave, in double words; 1
double word = 4 byte.

LONG

work_arr[] Array which is initialized for the operation with the Profi-
net slave. The array must have at least AB_WORK_ARR_
LEN (5000) elements.

ARRAY

LONG

ret_val Status of initialization:
0: initialization was successful.
-1: Error data area sizes are wrong.

LONG

Run_ProfinetIO
Run_ProfinetIO ADwin

158 ADwin-X-A20, Manual Sep. 2019

Run_ProfinetIO Run_ProfinetIO exchanges data with the Profinet Slave.

Syntax

#Include ADwin-X.inc

ret_val = Run_ProfinetIO(out_pd_arr[], in_pd_arr[],
pd_arr_len, work_arr[])

Parameters

Notes

The number pd_arr_len of values is the same for both data transfer arrays
even though the input area may be initialized with a different size than the output
area.

Each array element in in_pd_arr[] and out_pd_arr[] stores 4 data bytes
= 1 double word. A double word corresponds to a value of data type Long.

See also

Init_ProfinetIO

Valid for

- / -

Example

see Init_ProfinetIO

out_pd_
arr[]

Array, from which the Profinet Slave reads data (num-
ber pd_arr_len) and writes them to the Profinet bus.

ARRAY

LONG

in_pd_arr[] Array, into which the Profinet Slave writes received data
(number pd_arr_len).

ARRAY

LONG

pd_arr_len Number of double words (1, 2, 4, 8, 16, 32, 64, 128, 196,
256, 320), which are transferred in in_pd_arr[] and
out_pd_arr[].

LONG

work_arr[] Array holding data for operation of the Profinet Slave,
see Init_ProfinetIO.

ARRAY

LONG

ret_val State of operation of the Profinet Slave:
0: Initialization.
2: Slave waits for bus start by master.
4: Normal operation.

LONG

ADwin-X-A20, Manual Sep. 2019 159

EtherCAT interface
EtherCAT interfaceADwin

16.10EtherCAT interface
This section describes instruction to access the EtherCAT node on ADwin-X-A20:

– Init_EtherCAT (page 160)

– Run_EtherCAT (page 162)

Init_EtherCAT
Init_EtherCAT ADwin

160 ADwin-X-A20, Manual Sep. 2019

Init_EtherCAT Init_EtherCAT initializes an array for operation with the EtherCAT slave.

Syntax

#Include ADwin-X.inc

ret_val = Init_EtherCAT(in_size, out_size, data_type,
work_arr[])

Parameters

Notes

This instruction must be processed before working with EtherCAT Slave.

The size of data areas must be the same as while projecting the EtherCAT bus.
Please note while projecting, that the size of data areas may be given in other
units than byte (e.g. Byte, Word).

See also

Run_EtherCAT

Valid for

X-A20+ECAT

in_size Size (0…360) of the input area in the EtherCAT slave in
double words.

LONG

out_size Size (0…360) of the output area in the EtherCAT slave
in double words.

LONG

data_type Data type of input and output area. A value in the area
Wert belegt ein Doppelwort (=4 Byte). Verfügbar sind:
AB_DATA_TYPE_SINT32: Signed integer, 32 Bit.
AB_DATA_TYPE_FLOAT: Floating point, 32 Bit.

LONG

work_arr[] Array which is initialized for the operation with the Ether-
CAT slave. The array must have at least AB_WORK_
ARR_LEN (5000) elements.

ARRAY

LONG

ret_val Status of initialization:
0: initialization was successful.
-1: Error data area sizes are wrong.

LONG

ADwin-X-A20, Manual Sep. 2019 161

Init_EtherCAT
Init_EtherCATADwin

Example
ADbasic#Include ADwin-X.inc
#Define out_arr Data_2
#Define in_arr Data_3

'Data type according to Init_EtherCAT:
' AB_DATA_TYPE_SINT32 -> Long
' AB_DATA_TYPE_FLOAT -> Float32
Dim out_arr[1000] As Long
Dim in_arr[1000] As Long
Dim conf_arr[AB_WORK_ARR_LEN] As Long
Dim i As Long
Dim state As Long

LowInit:
Processdelay = 3000000 'set to 100 Hz
Rem init EtherCAT interface: input data area = 76 values
Rem and output data area = 92 values
Par_10 = Init_EtherCAT(76, 92, AB_DATA_TYPE_SINT32,
conf_arr)

Event:
Rem set data in out_arr[] to be transferred
For i = 1 To 92
out_arr[i] = (out_arr[i] + i)

Next i

Rem send and read data
state = Run_EtherCAT(out_arr,in_arr,92,conf_arr)
Par_2 = state

Rem now process received data stored in in_arr[1..76];
Rem in_arr[77..92] has been filled with unusable data,
Rem in_arr[93..1000] remains unused here.

Run_EtherCAT
Run_EtherCAT ADwin

162 ADwin-X-A20, Manual Sep. 2019

Run_EtherCAT Run_EtherCAT exchanges data with the EtherCAT slave.

Syntax

#Include ADwin-X.inc

ret_val = Run_EtherCAT(out_pd_arr[], in_pd_arr[],
pd_arr_len, work_arr[])

Parameters

Notes

The number pd_arr_len of values is the same for both data transfer arrays
even though the input area may be initialized with a different size than the output
area.

The arrays in_pd_arr[] and out_pd_arr[] must be declared with the size
of pd_arr_len at least.

Declare the arrays in_pd_arr[] and out_pd_arr[] with the data type which
fits to the setting of Init_EtherCAT, parameter data_type:

• Long for AB_DATA_TYPE_SINT32
• Float32 for AB_DATA_TYPE_FLOAT

Each array element in in_pd_arr[] and out_pd_arr[] has a size of 4 data
bytes = 1 double word.

See also

Init_EtherCAT

Valid for

X-A20+ECAT

Example

see Init_EtherCAT

out_pd_
arr[]

Array, from which the EtherCAT Slave reads data (num-
ber pd_arr_len) and writes them to the EtherCAT
bus.

ARRAY

LONG

FLOAT

in_pd_arr[] Array, into which the EtherCAT Slave writes received
data (number pd_arr_len).

ARRAY

LONG

FLOAT

pd_arr_len Number of values (1…360), which are transferred in
in_pd_arr[] and out_pd_arr[].

LONG

work_arr[] Array holding data for operation of the Profinet Slave,
see Init_EtherCAT.

ARRAY

LONG

ret_val State of operation of the Profinet Slave:
0: Initialization.
2: Slave waits for bus start by master.
4: Normal operation.

LONG

ADwin-X-A20, Manual Sep. 2019 163

ADwin
16.10.1LS-Bus + ADwin-X-A20

The section describes instructions of the LS-bus interface of ADwin-X-A20:

– LS_DIO_Init (page 164)

– LS_DigProg (page 166)

– LS_Dig_IO (page 168)

– LS_Digout_Long (page 170)

– LS_Digout_Long_BS (page 171)

– LS_Digin_Long (page 173)

– LS_Digin_Long_BS (page 174)

– LS_Get_Output_Status (page 176)

– LS_Reset (page 178)

– LS_Watchdog_Init (page 179)

– LS_Watchdog_Reset (page 181)

LS_DIO_Init ADwin

164 ADwin-X-A20, Manual Sep. 2019

LS_DIO_Init LS_DIO_Init initializes the specified module of type HSM-24V on the LS bus and
returns the error status.

Syntax

#Include ADwin-X.Inc

ret_val = LS_DIO_Init(ls-module)

Parameters

Notes

The instruction only be used in section Init:, since it takes long processing
time.

The initialization does the following settings:
• All DIO channels are set as inputs.

Other settings see LS_Digprog.
• The over-current status (> ca. 500mA) is reset.
• The error status for superheating is reset.
• The error status for timeout on the LS bus is reset.

The module stores occurring errors independently from the ADwin system.
Therefore, error bits in the return value can refer to an error which has occurred
some time earlier.

Please note: At program start, ignore the error bit WD until the watchdog counter
is reset with LS_Watchdog_Init. The watchdog counter starts with power-up
of the module and normally has launched an error until program start.

The error "superheating" of a driver may only occur, if over-currrent in the range
of 150…500mA is present on several channels at the same time. Irrespective of
this, an over-current of mor than 500mA automatically switches off the con-
cerned channel.

The channels of the module HSM-24V may only be operated in the range of
0…150mA. This ensures the module HSM-24V is working permanently without
interruption even if all channels are used in parallel.

See also

LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_Get_Output_
Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

ls-module Specified module address on the LS bus (1…15). LONG

ret_val Return value representing the error status:
-1: Communication with module is impossible.
>0: Bit pattern with several error bits.
Bit = 0: No error.
Bit = 1: Error occurred.

LONG

Bit no. 31…8 7 6 5…4 3 2 1 0

Status – Temp2 Temp1 – WD Time Ovr Par

 - :don't care (mask with 0CFh).
Par:Parity error during data transfer on the LS bus.
Ovr:Overrun error during data transfer on the LS bus.
Time:Timeout error during data transfer on the LS bus.
WD:Watchdog was released. The channel drivers are deactivated.
Temp1:Superheating on driver for channels 1…16. Driver is deactivated.
Temp2:Superheating on driver for channels 17…32. Driver is deactivated.

ADwin-X-A20, Manual Sep. 2019 165

LS_DIO_InitADwin
Example
REM Example process for one module HSM-24V and ADwin-X
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 0Fh)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

LS_DigProg ADwin

166 ADwin-X-A20, Manual Sep. 2019

LS_DigProg LS_Digprog sets the digital channels 1…32 of the specified module of type HSM-24V
on the LS bus as inputs or outputs in groups of 8.

Syntax

#Include ADwin-X.Inc

ret_val = LS_Digprog(ls-module, pattern)

Parameters

Notes

The instruction only be used in section Init:, since it takes long processing
time.

After initialization with LS_DIO_Init all channels are set as inputs.

The channels may be set as inputs or outputs in groups of 8 only (4 relevant bits
only, other bits are ignored).

See also

LS_DIO_Init, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_Get_Output_
Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

ls-module Specified module address on the LS bus (1…15). LONG

pattern Bit pattern, setting the channels as inputs or outputs:
Bit = 0: Set channels as inputs.
Bit = 1: Set channels as outputs.

LONG

Bit No. 31…4 3 2 1 0

Channel no. – 32:25 24:17 16:9 8:1

ret_val Return value representing the error status:
-1: Communication with module is impossible.
>0: Bit pattern with several error bits.
Bit = 0: No error.
Bit = 1: Error occurred.

LONG

Bit no. 31…8 7 6 5…4 3 2 1 0

Status – Temp2 Temp1 – WD Time Ovr Par

 - :don't care (mask with 0CFh).
Par:Parity error during data transfer on the LS bus.
Ovr:Overrun error during data transfer on the LS bus.
Time:Timeout error during data transfer on the LS bus.
WD:Watchdog was released. The channel drivers are deactivated.
Temp1:Superheating on driver for channels 1…16. Driver is deactivated.
Temp2:Superheating on driver for channels 17…32. Driver is deactivated.

ADwin-X-A20, Manual Sep. 2019 167

LS_DigProgADwin
Example
REM Example process for one module HSM-24V and ADwin-X
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 0Fh)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

LS_Dig_IO ADwin

168 ADwin-X-A20, Manual Sep. 2019

LS_Dig_IO LS_Dig_IO sets all digital outputs of the specified module HSM-24V on the LS bus to
the level High oder Low and returns the status of all channels as bit pattern.

Syntax

#Include ADwin-X.Inc

ret_val = LS_DIG_IO(pattern)

Parameters

Notes

LS_Dig_IO only runs correctly, if the following conditions are given:
• There is only one module on the LS bus.
• The module is of type HSM-24V.
• The module's address is set to 1.
• After calling LS_Dig_IO, no other LS bus instruction will be used.

The channels are set as inputs or outputs using LS_Digprog.

The pattern is applied to those channels only, which are set as outputs. Bits
for input channels are ignored.

The return value contains the real state of both inputs and outputs. The inputs
have a filter causing about 12µs signal delay.

LS_Dig_IO resets the watchdog counter of the module to the start value. The
counter remains enabled. The start value is set using LS_Watchdog_Init.

Reset the active watchdog timer at least once to the start value within the count-
ing interval, in order to keep the module working.

Valid for

HSM-24V + X-A20

See also

LS_DIO_Init, LS_DigProg, LS_Digout_Long, LS_Digin_Long, LS_Get_Output_
Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

pattern Bit pattern, setting the digital outputs (see table).
Bit = 0: Set outputs to level Low.
Bit = 1: Set outputs to level High.

LONG

ret_val Bit pattern representing the real state of all digital chan-
nels (see table).
Bit = 0: Channel has level Low.
Bit = 1: Channel has level High.

LONG

Bit No. 31 30 29 … 2 1 0

Channel no. 32 31 30 … 3 2 1

ADwin-X-A20, Manual Sep. 2019 169

LS_Dig_IOADwin
Example
REM Example process for one module HSM-24V and ADwin-X
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 0Fh)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

LS_Digout_Long ADwin

170 ADwin-X-A20, Manual Sep. 2019

LS_Digout_Long LS_Digout_Long sets or clears all digital outputs of the specified module HSM-24V
on the LS bus according to the transferred 32 bit value.

Syntax

#Include ADwin-X.Inc

LS_Digout_Long(ls-module,pattern)

Parameters

Notes
The channels are set as inputs or outputs using LS_Digprog.

The pattern is applied to those channels only, which are set as outputs. Bits
for input channels are ignored.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digin_Long, LS_Digout_Long_BS,
LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1…32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, PAR_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
LS_Watchdog_Reset()

ls-module Specified module address on the LS bus (1…15). LONG

pattern Bit pattern, setting the digital outputs (see table).
Bit = 0: Set outputs to level Low.
Bit = 1: Set outputs to level High.

LONG

Bit No. 31 30 … 2 1 0

Channel no. 32 31 … 3 2 1

ADwin-X-A20, Manual Sep. 2019 171

LS_Digout_Long_BSADwin
LS_Digout_Long_
BS

LS_Digout_Long_BS sets or clears all digital outputs of the specified module HSM-
24V on the LS bus according to the transferred 32-bit value and returns the error status.

Syntax

#Include ADwin-X.Inc

LS_Digout_Long_BS(ls_module,pattern,status)

Parameters

Notes

The channels are set as inputs or outputs using LS_Digprog.

The pattern is applied to those channels only, which are set as outputs. Bits
for input channels are ignored.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digin_Long_BS, LS_Digout_Long,
LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

ls-module Specified module address on the LS bus (1…15). LONG

pattern Bit pattern, setting the digital outputs (see table).
Bit = 0: Set outputs to level Low.
Bit = 1: Set outputs to level High.

LONG

Bit No. 31 30 … 2 1 0

Channel no. 32 31 … 3 2 1

status Bit pattern representing the error status:
0: O.k.
-1: No communication possible.
>0: Bit pattern with error bits.
Bit = 0: No error.
Bit = 1: Error occurred.

LONG

Bit no. 31:8 7 6 5:4 3 2 1 0

Status – Temp2 Temp1 – WD Time Ovr Par

 - :don't care (mask with 0CFh).
Par:Parity error during data transfer on the LS bus.
Ovr:Overrun error during data transfer on the LS bus.
Time:Timeout error during data transfer on the LS bus.
WD:Watchdog was released. The channel drivers are deactivated.
Temp1:Superheating on driver for channels 1…16. Driver is deactivated.
Temp2:Superheating on driver for channels 17…32. Driver is deactivated.

LS_Digout_Long_BS ADwin

172 ADwin-X-A20, Manual Sep. 2019

Example
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1…32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long_BS(1, PAR_16, Par_5)
If (Par_5 <> 0) Then End 'exit on error)
REM read LS channels of module 3
Par_17 = LS_Digin_Long_BS(3, Par_6)
If (Par_6 <> 0) Then End 'exit on error)
REM reset watchdog
LS_Watchdog_Reset()

ADwin-X-A20, Manual Sep. 2019 173

LS_Digin_LongADwin
LS_Digin_LongLS_Digin_Long returns the status of all channels of the specified module HSM-24V

on the LS bus as bit pattern.

Syntax

#Include ADwin-X.Inc

ret_val = LS_DIGIN_LONG(ls-module)

Parameters

Notes
We recommend to set the used channels as inputs with LS_Digprog before
use.

The return value contains the real state of both inputs and outputs. The inputs
have a filter causing about 12µs signal delay.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digin_Long_BS, LS_Digout_Long,
LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1…32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, PAR_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
LS_Watchdog_Reset()

ls-module Specified module address on the LS bus (1…15). LONG

ret_val Bit pattern representing the real state of all digital chan-
nels (see table).
Bit = 0: Channel has level Low.
Bit = 1: Channel has level High.

LONG

Bit No. 31 30 … 2 1 0

Channel no. 32 31 … 3 2 1

LS_Digin_Long_BS ADwin

174 ADwin-X-A20, Manual Sep. 2019

LS_Digin_Long_
BS

LS_Digin_Long_BS returns the status of all channels of the specified module HSM-
24V on the LS bus as bit pattern as well as the error status.

Syntax

#Include ADwin-X.Inc

ret_val = LS_Digin_Long_BS(ls_module, status)

Parameters

Notes

We recommend to set the used channels as inputs with LS_Digprog before
use.

The return value contains the real state of both inputs and outputs. The inputs
have a filter causing about 12µs signal delay.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digin_Long, LS_Digout_Long_BS,
LS_Get_Output_Status, LS_Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

ls_module Specified module address (1…15) on the LS bus. LONG

status Bit pattern representing the error status:
0: O.k.
-1: No communication possible.
>0: Bit pattern with error bits.
Bit = 0: No error.
Bit = 1: Error occurred.

LONG

Bit no. 31:8 7 6 5:4 3 2 1 0

Status – Temp2 Temp1 – WD Time Ovr Par

 - :don't care (mask with 0CFh).
Par:Parity error during data transfer on the LS bus.
Ovr:Overrun error during data transfer on the LS bus.
Time:Timeout error during data transfer on the LS bus.
WD:Watchdog was released. The channel drivers are deactivated.
Temp1:Superheating on driver for channels 1…16. Driver is deactivated.
Temp2:Superheating on driver for channels 17…32. Driver is deactivated.

ret_val Bit pattern. Each bit (31:0) represents the state of a dig-
ital channel (see table):
Bit = 0: Channel has level Low.
Bit = 1: Channel has level High.

LONG

Bit no. 31 30 … 2 1 0

Channel no. 32 31 … 3 2 1

ADwin-X-A20, Manual Sep. 2019 175

LS_Digin_Long_BSADwin
Example
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1…32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long_BS(1, PAR_16, Par_5)
If (Par_5 <> 0) Then End 'exit on error)
REM read LS channels of module 3
Par_17 = LS_Digin_Long_BS(3, Par_6)
If (Par_6 <> 0) Then End 'exit on error)
REM reset watchdog
LS_Watchdog_Reset()

LS_Get_Output_Status ADwin

176 ADwin-X-A20, Manual Sep. 2019

LS_Get_Output_
Status

LS_Get_Output_Status returns the over-current status of outputs of the specified
module HSM-24V on the LS bus as bit pattern.

Syntax

#Include ADwin-X.Inc

ret_val = LS_GET_OUTPUT_STATUS(ls-module)

Parameters

Notes
A "superheating" error of a driver may only occur, if over-currrent in the range of
150…500mA is present on several channels at the same time. Irrespective of
this, an over-current of more than 500mA automatically switches off the con-
cerned channel.

After a "superheating" errorthe module is reset with LS_DIO_Init.

The channels of the module HSM-24V may only be operated in the range of
0…150mA. This ensures the module HSM-24V is working permanently without
interruption even if all channels are used in parallel.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_
Reset, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

ls-module Specified module address on the LS bus (1…15). LONG

ret_val Bit pattern. Each bit (31…0) represents the over-current
status of a digital output (see table).
Bit = 0: Standard status.
Bit = 1: Over-current occurred, output disabled.

LONG

Bit no. 31 30 … 2 1 0

Channel no. 32 31 … 3 2 1

ADwin-X-A20, Manual Sep. 2019 177

LS_Get_Output_StatusADwin
Example
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1…32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:
REM check for over-current
Par_5 = LS_Get_Output_Status(1) + LS_Get_Output_Status(3)
If (Par_5 > 0) Then End 'over-current: Exit program

REM set one channel to high, rotating from 1 To 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, Par_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
LS_Watchdog_Reset()

LS_Reset ADwin

178 ADwin-X-A20, Manual Sep. 2019

LS_Reset LS_Reset setzt die Schnittstelle zum LS-Bus zurück.

Syntax

#Include ADwin-X.Inc

LS_Reset()

Parameters
-/-

Notes

Die Anweisung soll nur im Abschnitt INIT: verwendet werden, weil sie eine
lange Ausführungszeit hat.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_
Get_Output_Status, LS_Watchdog_Init, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

Example
REM Example process for one module HSM-24V and ADwin-X
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
LS_Reset()
LS_Watchdog_Reset()
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 0Fh)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

ADwin-X-A20, Manual Sep. 2019 179

LS_Watchdog_InitADwin
LS_Watchdog_InitLS_Watchdog_Init enables or disables the watchdog counter of a specified module

on the LS bus. If enabled, the counter is set to the start value and is started.

Syntax

#Include ADwin-X.Inc

ret_val = LS_WATCHDOG_INIT(ls-module,enable,time)

Parameters

Notes

The instruction only be used in section Init:, since it takes long processing
time.

As long as the watchdog counter is enabled, it decrements the counter value
continuously. After the set release time the counter value reaches 0 (zero). If so,
the module assumes a malfunction and stops; thus, all output signals are reset.

After power-up of the module the counter is set to the start value 10ms and the
watchdog counter is enabled.

Reset the active watchdog timer at least once to the start value within the count-
ing interval, in order to keep the module working. To reset the module use any
module specific instruction or LS_Watchdog_Reset.

The watchdog function is used as to monitor the connection between ADwin sys-
tem and LS bus module.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_
Get_Output_Status, LS_Reset, LS_Watchdog_Reset

Valid for

HSM-24V + X-A20

ls-module Specified module address on the LS bus (1…15). LONG

enable Set status of watchdog counter:
0 : Disable watchdog counter.
1 : Enable watchdog counter.

LONG

time Release time (0…107374) of the counter in millisec-
onds.

LONG

ret_val Return value representing the error status:
-1: Communication with module is impossible.
>0: Bit pattern with several error bits.
Bit = 0: No error.
Bit = 1: Error occurred.

LONG

Bit no. 31…8 7 6 5…4 3 2 1 0

Status – Temp2 Temp1 – WD Time Ovr Par

 - :don't care (mask with 0CFh).
Par:Parity error during data transfer on the LS bus.
Ovr:Overrun error during data transfer on the LS bus.
Time:Timeout error during data transfer on the LS bus.
WD:Watchdog was released. The channel drivers are deactivated.
Temp1:Superheating on driver for channels 1…16. Driver is deactivated.
Temp2:Superheating on driver for channels 17…32. Driver is deactivated.

LS_Watchdog_Init ADwin

180 ADwin-X-A20, Manual Sep. 2019

Example
REM Example process for one module HSM-24V and ADwin-X
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
Par_1 = LS_DIO_Init(1)
REM enable watchdog time with 1.1 sec
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 0Fh)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_10
If (Par_10 >= 32) Then Par_10 = 0
Par_11 = Shift_Left(1, Par_10)
REM reset watchdog, set LS channels, and read back real state
REM (note: LS_Dig_IO uses LS address 1)
Par_12 = LS_Dig_IO(Par_11)

ADwin-X-A20, Manual Sep. 2019 181

LS_Watchdog_ResetADwin
LS_Watchdog_
Reset

LS_Watchdog_Reset resets the watchdog counters of all modules on the LS bus to
the appropriate start value. The counters remain enabled.

Syntax

#Include ADwin-X.Inc

LS_WATCHDOG_RESET()

Parameters

- / -

Notes

As long as a watchdog counter is enabled, it decrements the counter value con-
tinuously. After the set release time the counter value reaches 0 (zero). If so, the
module assumes a malfunction and stops; thus, all output signals are reset.

Reset the active watchdog timer at least once to the start value within the count-
ing interval, in order to keep the module working. To reset the module you may
also use any module specific instruction.

The watchdog function is used as to monitor the connection between ADwin sys-
tem and LS bus module.

See also

LS_DIO_Init, LS_DigProg, LS_Dig_IO, LS_Digout_Long, LS_Digin_Long, LS_
Get_Output_Status, LS_Reset, LS_Watchdog_Init

Valid for

HSM-24V + X-A20

Example
REM Example process for ADwin-X-A20 and 2 modules HSM-24V
REM Set process to low priority!
#Include ADwin-X.inc

Init:
Processdelay = 4000000 '10Hz HP
REM settings for LS module 1
Par_1 = LS_DIO_Init(1)
REM enable watchdog with 1.1 s
Par_2 = LS_Watchdog_Init(1, 1, 1100)
REM set LS channels 1…32 as outputs
Par_3 = LS_Digprog(1, 01111b)

REM settings for LS module 3
Par_11 = LS_DIO_Init(3)
REM enable watchdog with 1.1 s
Par_12 = LS_Watchdog_Init(3, 1, 1100)
REM set LS channels 1…32 as inputs
Par_13 = LS_Digprog(3, 0h)

Event:
REM set one LS channel to high, rotating from 1 to 32
Inc Par_15
If (Par_15 >= 32) Then Par_15 = 0
Par_16 = Shift_Left(1, PAR_15)
REM set LS channels of module 1
LS_Digout_Long(1, PAR_16)
REM read LS channels of module 3
Par_17 = LS_Digin_Long(3)
REM reset watchdog
LS_Watchdog_Reset()

Annex ADwin

A-1 ADwin-X-A20, Manual Sep. 2019

Annex

A.1 Technical Data

General Data/Limit Values

Symbol Conditions min. typ. max. Unit

Supply Voltage/Supply Current

Voltage Ub 10 12 28 V

Idle current Iidle 0.6 0.8 1.5 A

Power-up current Ipower-on 3.0

Valid operation ranges

Temperature Tenvironment +5 +50 °C

Tchassis +5 +55

Relative humidity Frel no condensation 0 80 %

Storage

Temperature T -20 +70 °C

Humidity RH no condensation or
aggressive atmosphere

Dimensions

Width x height x depth W x H x D 215 x 125 x 47 mm

Variant -R 42 HP x 3 U
213,5 x 129 x 29,5 mm

Net weight

Weight mNet 760 g

Variant -R 580 g

Connectors

DSUB connectors Metric ISO threads; UNC threads available as ordering option

Installation

optional DNI rail mounting and wall mounting

Processor T12.1

Parameter Symbol Conditions min. typ. max. Unit

Type ZYNQ™ with Dual-Core ARM Cortex-A9

Manufacturer XILINX

Clock frequency fCLK 666 MHz

Register width Floating point
Integer

64
32

Bit

Memory DRAM 1 GByte

ADwin-X-A20, Manual Sep. 2019 A-2

AnnexADwin
Basic version

Parameter Symbol Conditions min. typ. max. Unit

Analog Inputs (ADC 18-bit)

Number 8, differential.
Version M1: Conversion via multiplexer, Version F: Conversion synchronously.

Input voltage Uout Version M1/F, kV=1 -10 +9.999695 V

Version F, kV=2 -5 +4.999847 V

Input resistance Ri 323.4 330 336.6 kΩ
Overvoltage Uin max. ON & OFF ±35 V

Conversion time tConv Version M1 5 µs

Version F, refers to
number of channels

1.25 5 µs

Integral non-linearity INL kV=1 ±1 ±3.5 LSB

Differential non-linearity DNL ±0.2 ±0.9

Outputs: DAC 16-bit

Number 2

Output voltage Uout -10 +9.999695 V

Update time tupdate 1 µs

Settling time tsettle 2V jump 2 µs

FSRa (20V)

a Full Scale Range

4

Permissible current ±5 mA

Integral non-linearity INL ±2 LSB

Differential non-linearity DNL ±1

Offset Error Adjustable with ADtest.exe

Gain Error Adjustable with ADtest.exe

Outputs: DAC 12-bit

Number 2

Output voltage Uout -10 +9.995117 V

Update time tupdate 500 1000 µs

Permissible current ±5 mA

Integral non-linearity INL ±2 LSB

Differential non-linearity DNL ±1

Offset Error Adjustable with ADtest.exe

Gain Error Adjustable with ADtest.exe

Digital Inputs/Outputs

Number DIO39:32 8 (TTL level), programmable as inputs / outputs in groups of 4

EVENT
(Digin 62)

1 ext. trigger input

Circuitry see "Circuitry of digital inputs / outputs", TTL inputs/outputs, Event input, page A-4

LS bus

1 serial interface for up to 15 LS bus modules.

Annex ADwin

A-3 ADwin-X-A20, Manual Sep. 2019

Option CO1

Parameter Symbol Conditions min. typ. max. Unit

Counter

Number and function 1 counter block in-/decremental counter (event counter with clock/direction or four
edge evaluation) and PWM counter (pulse width measurement).
Pins with TTL level, double assignment.

Properties see "Counter", page A-5

Option D

Parameter Symbol Conditions min. typ. max. Unit

Digital Inputs/Outputs

Number DIO41:DIO40

DIGIN47:
DIGIN42

DIGIN60

2 programmable inputs or outputs, differential

6 inputs, differential, double assignment.

1 input, differential, double assignment.

Circuitry see "Circuitry of digital inputs / outputs", differential, page A-4

Counter

Number and function 2 counter blocks in-/decremental counter (event counter with clock/direction or four
edge evaluation) and PWM counter (pulse width measurement).
Pins differential, double assignment.

Properties see "Counter", page A-5

Interfaces

SSI 1 SSI decoder, pins differential, double assignment.

Option DCT

Parameter Symbol Conditions min. typ. max. Unit

Digital Inputs/Outputs

Number DIO41:DIO40

DIGIN47:
DIGIN42

DIGIN60

2 programmable inputs or outputs, differential

6 inputs, differential, double assignment.

1 input, differential, double assignment.

DIO31:DIO00

DIGIN55:
DIGIN48

DIGIN59:
DIGIN55

32 inputs or outputs, TTL level, programmable as inputs / outputs
in groups of 8, DIO31:DIO26 have double assignment.

8 inputs, comparator levels set with DAC12-1, double assignment.

4 inputs, comparator levels set with DAC12-2.

Circuitry see "Circuitry of digital inputs / outputs", TTL inputs/outputs, differential, page A-4

Counter

Number and function 2 counter blocks, inputs differential, double assignment.
2 counter blocks, inputs with TTL levels, double assignment.
2 comparator counter blocks, inputs with TTL level, double assignment.

Each counter block with in-/decremental counter (event counter with clock/direction
or four edge evaluation) and PWM counter (pulse width measurement).

Properties see "Counter", page A-5

Interfaces

SSI SSI decoder, 1 interface. Pins with TTL level, double assignment.

ADwin-X-A20, Manual Sep. 2019 A-4

AnnexADwin
Option COM

Interfaces

CAN CAN High speed, 2 interfaces

RS232 RS232, 1 interface

Option Profinet

Interfaces

Profinet Profinet, 1 interface

Option Profibus-IRT

Interfaces

Profibus-IRT Profibus-IRT, 1 interface

2 plugs RJ-45 (copper) or 2 duplex plugs SC-RJ (fiber optics)

Option EtherCat

Interfaces

EtherCat EtherCat, 1 interface

Circuitry of digital inputs / outputs

Parameter Symbol Conditions min. typ. max. Unit

EVENT input

Edge detection, pos. VT+ (Low) VCC = 5V 1.65 1.9 2.15 V

Edge detection, neg. VT- (High) VCC = 5V 0.75 1.0 1.25

Switching hysteresis VT+ - VT- 0.4 0.9

Input current IIH VI = 2.7V 20 µA

IIL VI = 0.4V -50

TTL inputs

Input voltage -0.5 +6.0 V

Logic
input voltage

VIH (High) VCC = 5V 3.5

VIL (Low) VCC = 5V 1.5

Logic input current II 10kΩ Pull-down

Comparator inputs

Input voltage -0.1 +30 V

Logic switching treshold VIH (High) Uout DAC12 + 0,4V 0.4…5

VIL (Low) Uout DAC12 - 0,4V 0…4.6

Switching hysteresis VIH - VIL depends on
Uout DAC12

±30 ±70 mV

max. measurement
frequency

f depends on
Uout DAC12 and VI

10 30 200 kHz

Logic input current II 14,7kΩ Pull-up (to +5V)

Differential channels DIO41:DIO40

Differential input thresh-
old voltage

VTH -7V ≤ VCM ≤ 12V -300 +300 mV

Input hysteresis ΔVTH -7V ≤ VCM ≤ 12V 25 mV

Range of common mode
voltage

VCM -7 +12 V

Differential output
voltage

VOD1 1.5 5 V

Annex ADwin

A-5 ADwin-X-A20, Manual Sep. 2019

Differential inputs DIGIN47:DIGIN42

Differential input thresh-
old voltage

VTH -10V ≤ VCM ≤
13.2V

-200 +200 mV

Input hysteresis ΔVTH -10V ≤ VCM ≤
13.2V

40 mV

Range of common mode
voltage

VCM -10 +13.2 V

Differential slew rate 0.33 V/µs

Permissible differential
input voltage

for each input ±3.9 V

Bus termination 120 Ω
TTL outputs

Logic
output voltage

VOH (High) IOH= -32mA 3.8 V

VOL (Low) IOL= +32mA,
VCC = 4.5V

0.55

Logic output current IO je DIO-Leitung ±32 mA

ITOTAL je DIO-Gruppe (8)
über VCC / GND

±100

Counter

Parameter Symbol Conditions min. typ. max. Unit

Reference oscillator

Reference frequency fref 33,3 MHz

Accuracy and Drift ±50 ppm

Function Counter block with

– up/down counter for measurement of duty cycle, pulkse and pause width and
event counting with clock / direction or four-edge-evaluation.

– PWM counter with internal clock for pulse width evaluation.

Counter inputs Each counter has 3 inputs (A/CLK, B/DIR, CLR/LATCH).

Input circuitry see "Circuitry of digital inputs / outputs"

Counter resolution 32 Bit

Count frequency
counter 1…5

fCLK Input CLK 20 MHz

Input A/B 5

Count frequency
comparator counter 6, 7

fCLK Input CLK 200 kHz

Input A/B 50

PWM count frequency fCLK internal 100 MHz

Circuitry of digital inputs / outputs

ADwin-X-A20, Manual Sep. 2019 A-6

AnnexADwin
A.2 Hardware revisions

The revision is marked on the bottom of the casing. The differences of the revision status’ are shown below.

A.3 RoHS Declaration of Conformity

The RoHS directive 2011/65/EU of the European Union on the restriction of the use of certain hazardous sub-
stances in electrical und electronic equipment (RoHS directive) has become operative as from 3rd January,
2013.

The following substances are involved:

– Lead (Pb)

– Cadmium (Cd)

– Hexavalent chromium (Cr VI)

– Polybrominated biphenyls (PBB)

– Polybrominated diphenyl ethers (PBDE)

– Mercury (Hg)

– Bis(2-ethylhexyl) phthalate (DEHP)

– Benzyl butyl phthalate (BBP)

– Dibutyl phthalate (DBP)

– Diisobutyl phthalate (DIBP)

The product line ADwin-X-A20 complies with the requirements of the RoHS directive in all delivered variants.

Revision First
release

Changes to previous revision status

A 1 / 2019 First release.

	ADwin-X-A20
	Table of Contents
	1 Typografische Konventionen
	1 Information about this Manual
	2 System description
	2.1 ADwin system concept
	Communication between ADwin system and PC

	2.2 ADwin-X-A20
	2.2.1 Design
	2.2.2 Functions
	2.2.3 Accessories

	3 Operating Environment
	4 Initialization of the Hardware
	5 Overview Inputs and Outputs
	6 X-A20 Basic
	6.1 Multi-color LED
	6.2 Analog inputs, 18-bit
	6.2.1 Calculation Basics

	6.3 Analog outputs, 12-bit
	6.4 Analog outputs, 16-bit
	6.5 TTL digital channels DIO39:DIO32
	6.6 Event Input
	6.7 LS-Bus
	6.8 Synchronous Actions

	7 Option CO1
	8 Option D
	8.1 Diff. digital channels DIO47:DIO40
	8.2 Diff. counters 4, 5
	8.3 SSI interface

	9 Option DCT
	9.1 TTL-digital channels DIO31:DIO00
	9.2 Comparator inputs DIO59:DIO48
	9.3 Edge control and Edge output
	9.4 TTL Counters 2, 3
	9.5 Comparator Counters 6, 7

	10 Option COM
	10.1 CAN interfaces
	10.1.1 Hardware description
	10.1.2 Description of the CAN interface
	Managing messages
	Setting the bus frequency

	10.2 RS232 interface

	11 Option Profibus
	Functions description
	Hardware
	Projecting the Profibus
	Programming with ADbasic
	Specification

	12 Option Profinet-IRT
	Functions description
	Hardware
	Projecting the Profinet
	Programming with ADbasic
	Specifications

	13 Option EtherCAT
	Functions description
	Hardware
	Projecting the EtherCAT bus
	Programming with ADbasic
	Specifications

	14 Option Boot
	15 Counter block
	15.1 Evaluation of the Counter Contents
	15.2 Using Event Counter
	15.2.1 Clock and Direction
	15.2.2 Four Edge Evaluation

	15.3 Using PWM Counter

	16 Software
	16.1 General instructions
	Check_LED
	Set_LED
	Calc_ Processdelay
	CPU_Event_ Config
	Sync_All

	16.2 Analog Inputs and Outputs
	DAC
	DAC12
	Start_DAC
	Write_DAC
	ADC
	ADC24
	ADC2
	ADC4
	ADC8
	ADC2_24
	ADC4_24
	ADC8_24
	Read_ADC
	Read_ADC24
	Read_ADC_ Packed
	Read_ADC8
	Read_ADC8_24
	Start_Conv
	Start_Conv_PGA
	Wait_EOC

	16.3 Digital Inputs and Outputs
	Conf_DIO
	Dig_Latch
	Digin_Read_ Latch1
	Digin_Read_ Latch2
	Digout_Write_ Latch1
	Digout_Write_ Latch2
	Digin
	Digin_Long1
	Digin_Long2
	Digin_Filter_Init
	Digin_Edge1
	Digin_Edge2
	Digout
	Digout_Long1
	Digout_Long2
	Digout_Bits1
	Digout_Bits2
	Get_Digout_ Long1
	Get_Digout_ Long2
	Digin_Fifo_Read_ Timer
	Digin_Fifo_Clear
	Digin_Fifo_ Enable
	Digin_Fifo_Full
	Digin_Fifo_Read
	Digout_Fifo_ Read_Timer
	Digout_Fifo_Clear
	Digout_Fifo_ Enable
	Digout_Fifo_ Empty
	Digout_Fifo_ Mode
	Digout_Fifo_Start
	Digout_Fifo_Write

	16.4 Counter
	Cnt_Clear
	Cnt_Enable
	Cnt_PW_Enable
	Cnt_Get_Status
	Cnt_Latch
	Cnt_Mode
	Cnt_Read
	Cnt_PW_Latch
	Cnt_Read_Int_ Register
	Cnt_Get_PW
	Cnt_Get_PW_HL
	Cnt_Read_Latch
	Cnt_Sync_Latch

	16.5 SSI interface
	SSI_Mode
	SSI_Read
	SSI_Set_Bits
	SSI_Set_Clock
	SSI_Set_Delay
	SSI_Start
	SSI_Status

	16.6 CAN interface
	CAN_Msg
	CAN_Init
	CAN_Receive
	CAN_RX_Set_ Filter
	CAN_Transmit

	16.7 RSxxx Interface
	RS_Init
	RS_Read_FIFO
	RS_Write_FIFO
	RS_Write_FIFO_ Full
	RS_Write_FIFO_ Empty

	16.8 Profibus interface
	Init_Profibus
	Run_Profibus

	16.9 Profinet interface
	Init_ProfinetIO
	Run_ProfinetIO

	16.10 EtherCAT interface
	Init_EtherCAT
	Run_EtherCAT
	16.10.1 LS-Bus + ADwin-X-A20
	LS_DIO_Init
	LS_DigProg
	LS_Dig_IO
	LS_Digout_Long
	LS_Digout_Long_ BS
	LS_Digin_Long
	LS_Digin_Long_ BS
	LS_Get_Output_ Status
	LS_Reset
	LS_Watchdog_Init
	LS_Watchdog_ Reset

	Annex
	A.1 Technical Data
	A.2 Hardware revisions
	A.3 RoHS Declaration of Conformity

