
ADwin-light-16
Manual

ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013

For any questions, please don’t hesitate to contact us:

Hotline: +49 6251 96320
Fax: +49 6251 5 68 19
E-Mail: info@ADwin.de
Internet www.ADwin.de

Jäger Com-
putergesteuerte
Messtechnik GmbH
Rheinstraße 2-4
D-64653 Lorsch
Germany

ADwin-light-16 , manual version 3.5, November 2013 III

ADwin
Table of contents

 Typographical Conventions .V

1 Information about this manual . 1

2 System description . 2
2.1 ADwin system concept. 2
2.2 ADwin-light-16 . 4

3 Operating Environment . 7

4 Start-up of the Hardware . 8

5 Inputs and Outputs . 9
5.1 Analog Inputs and Outputs. 11
5.2 Digital Inputs and Outputs . 13
5.3 Impulse/Event Counter. 14
5.4 LS Bus . 16
5.5 Time-critical tasks . 17

6 Calibration . 19

7 CO1 Counter Add-On . 23
7.1 Hardware . 23
7.2 Programming . 24

8 DIO1 Add-On . 25
8.1 Digital Inputs and Outputs . 28
8.2 Counters. 29
8.3 CAN-Bus . 36
8.4 SSI Decoder. 40

9 DIO2 / DIO3 Add-On . 41
9.1 Digital Inputs and Outputs . 43
9.2 Counters. 44
9.3 SSI Decoder. 51

10 PWM1 Add-On . 53
10.1 PWM Output. 54
10.2 SPI Interface . 55

11 ADwin-light-16-Boot . 57

12 Accessories . 58

13 Software . 59
13.1 Example Program . 59
13.2 Analog Inputs and Outputs. 63
13.3 Digital Inputs and Outputs . 77
13.4 Counter . 95
13.5 CAN interface. 111

ADwin

IV ADwin-light-16 , manual version 3.5, November 2013

13.6 SSI interface. 127
13.7 PWM Outputs. 135
13.8 SPI Interface . 146

 Annex . A-1
A.1 Technical Data. A-1
A.2 Hardware Addresses - General Overview . A-7
A.3 Hardware-Revisions . A-8
A.4 RoHS Declaration of Conformity . A-8
A.5 Overview Connectors / Enclosures . A-9
A.6 Baud rates for CAN bus. A-16
A.7 Table of figures . A-19
A.8 Index . A-20

ADwin-light-16 , manual version 3.5, November 2013 V

Typographical ConventionsADwin
Typographical Conventions
"Warning" stands for information, which indicate damages of hardware or soft-
ware, test setup or injury to persons caused by incorrect handling.

You find a "note" next to

– information, which absolutely have to be considered in order to guaran-
tee an error free operation.

– advice for efficient operation.

"Information" refers to further information in this documentation or to other
sources such as manuals, data sheets, literature, etc.

<C:\ADwin\ …>File names and paths are placed in <angle brackets> and characterized in the
font Courier New.

Program textProgram commands and user inputs are characterized by the font Courier
New.

Var_1Source code elements such as commands, variables, comments and other
text are characterized by the font Courier New and are printed in color.

Bits in data (here: 16 bit) are referred to as follows:

Bit No. 15 14 13 … 01 00
Bit value 215 214 213 … 21=2 20=1
Synonym MSB - - - - LSB

Typographical Conventions ADwin

VI ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 1

Information about this manual
Information about this manualADwin

1 Information about this manual
This manual contains comprehensive information about the operation of the
ADwin-light-16 system. Additional information is available in

– the manual "ADwin Driver Installation", which describes all interface
installations for the ADwin systems.
Commence your installation with the help of this manual.

– the description of the configuration program ADconfig. With it, you ini-
tialize the communication of the corresponding interface with
ADwin-light-16.

– the manual ADbasic, which contains all instructions for the compiler
ADbasic and explains the principle of ADwin systems in particular.

The online help of ADbasic contains the same information.

– the description of the driver installation and command instructions for all
well known development environments.

– the manual "ADwin HSM-24V", a module on the LS bus.

Please note:

For ADwin systems to function correctly, adhere strictly to the information pro-
vided in this documentation and in other mentioned manuals.

Qualified personnelProgramming, start-up and operation, as well as the modification of program
parameters must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience
and training as well as their knowledge of applicable technical stan-
dards, guidelines, accident prevention regulations and operating condi-
tions, have been authorized by a quality assurance representative at the
site to perform the necessary acivities, while recognizing and avoiding
any possible dangers.
(Definition of qualified personnel as per VDE 105 and ICE 364).

Availability of the
documents

This product documentation and all documents referred to, have always to be
available and to be strictly observed. For damages caused by disregarding the
information in this documentation or in all other additional documentations, no
liability is assumed by the company Jäger Computergesteuerte Messtechnik
GmbH, Lorsch, Germany.

Legal informationThis documentation, including all pictures is protected by copyright. Reproduc-
tion, translation as well as electronical and photographical archiving and mod-
i f i ca t ion requ i re a wr i t ten permiss ion by the company Jäger
Computergesteuerte Messtechnik GmbH, Lorsch, Germany.

OEM products are mentioned without referring to possible patent rights, the
existence of which, may not be excluded.

Subject to change.
Hotline address: see inner side of cover page.

System description
System description ADwin

2 ADwin-light-16 , manual version 3.5, November 2013

2 System description

2.1 ADwin system concept
ADwin systems guarantee fast and accurate operation of measurement data
acquisition and automation tasks under real-time conditions. This offers an
ideal basis for applications such as:

– very fast digital closed-loop control systems

– very fast open-loop control systems

– data acquisition with very fast online analysis of the measurement data

– monitoring of complex trigger conditions and many more

ADwin systems are optimized for processes which need very short process
cycle times of one millisecond down to some microseconds.

System features The ADwin system is equipped with analog and digital inputs and outputs, a
fast processor (32-bit floating point signal processor) and local memory. The
processor is responsible for the whole real-time processing in the system. The
applications run independent of the PC and its workload.

Processor The processor of the ADwin system processes each measurement value at
once.

In one cycle you can acquire the status of the inputs, process the status with
the help of any mathematical functions, and react to the results, even at very
fast process cycle times of some microseconds. This results in a perfect and
logical work sharing: The PC executes a program for visualizing of data, for
input and operation of the processes, togeher with access to networks and
data bases, while the processor of the ADwin system executes all tasks which
require real-time processing concurrently.

Real-time operating
system

The operating system for the DSP of the ADwin system has been optimized
to achieve the fastest response times possible. It manages parallel processes
in a multitasking environment. Low priority processes are managed by time
slicing. Specified high priority processes interrupt all low priority processes and
are immediately and completely executed (preemptive multitasking). High pri-
ority processes are executed as time-controlled or event-controlled processes
(external trigger).

Timing The built-in timer is responsible for the precise scheduling of high priority pro-
cesses. It has a resolution of 25 nanoseconds (3,3ns since processor T11).
The ADwin systems are characterized by an extremely short response time of
only 300 nanoseconds during the change from a low to a high priority process.
A continously running communication process enables a continous data
exchange between the ADwin system and the PC even while applications are
active. The communication has no influence on the real-time capability of the
ADwin system, even so, it is possible to exchange data at any time.

ADbasic The real-time development tool ADbasic gives the opportunity to create
time-critical programs for ADwin systems very easily and quickly. ADbasic is
an integrated development environment under Windows with possibilities of
online debugging. The familiar, easy-to-learn BASIC instruction syntax has
been extended by many more functions, in order to allow direct access to
inputs and outputs as well as by functions for process control and communi-
cation with the PC.

ADwin-light-16 , manual version 3.5, November 2013 3

System description
System descriptionADwin

Communication between ADwin system and PC

InterfacesThe ADwin system is connected to the PC via an USB or Ethernet interface.
After power-up the ADwin system is booted from the PC via this interface.
Afterwards the ADwin operating system is waiting for instructions from the PC
which it will process.

Instruction processingThere are two kinds of instructions: On the one hand instructions, which trans-
fer data from the PC to the ADwin system, for instance "load process", "start
process" or "set parameter", on the other hand instructions which wait for a
response from the ADwin system, for instance "read variables" or "read data
sets". Both kinds of instructions are processed immediately by the ADwin sys-
tem, which means immediate and complete responses. The ADwin system
never sends data to the PC without request! The data transfer to the PC is
always a response to an instruction coming from the PC. Thus, embedding the
ADwin system into various programming languages and standard software
packages for measurements is held simple, because they have only to be able
to call functions and process the return value.

Software interfacesUnder Windows 95/98/NT/ME/2000/XP/Vista you can use a DLL and an
ActiveX interface. On this basis the following drivers for development envi-
ronments are available:
.NET, Visual Basic, Visual-C, C/C++, Delphi, VBA (Excel, Access, Word),
TestPoint, LabVIEW / LabWINDOWS, Agilent VEE (HP-VEE), InTouch, DIA-
dem, DASYLab, SciLab, MATLAB.

Versions for Linux, Mac OS and Java are available, too.

The simple, instruction-oriented communication with the ADwin system
enables several Windows programs to access the same ADwin system in
coordination at the same time. This is of course a great advantage when pro-
grams are being developed and installed.

Fig. 1 – Concept of the ADwin systems

System description
System description ADwin

4 ADwin-light-16 , manual version 3.5, November 2013

2.2 ADwin-light-16
Processor and memory The ADwin-light-16 system is equipped with the 32 bit signal processor

ADSP 21062 (SHARC) from Analog Devices with floating point and integer
processing. It is responsible for the complete measurement data acquisition,
online processing, and signal output and can instantaneously process - in com-
bination with the A/D-converter - each measured value with sample rates of up
to 100 kHz; from Rev. B an optional sample rate of 500kHz is available.

The on-chip memory with 256 KiB has a very short access time of 25 ns and
is large enough to hold the complete ADwin operating system, the ADbasic
process and all variables.

In order to get maximum access speed, all inputs and outputs are memory
mapped in the external memory section of the DSP. For buffering larger quan-
tities of data the DSP uses an external memory (SDRAM) of 8 MiB (Rev. B
has 16MiB).

Analog inputs In a 37-pin D-SUB socket there are 8 analog inputs available, which are con-
nected to a multiplexer, whose output signal is converted with a 16 bit ana-
log-to-digital converter (ADC, see figure below). Since revision B a sequential
control for automatic conversion of several channels is available.

Fig. 2 – Functional diagram (with USB interface)

Analog outputs ADwin-light-16 is equipped with 2 analog outputs with 16 bit resolution and an
output voltage range of -10 V ... +10 V. The output voltages of all DACs are
synchronized and calibrated per software. In order to smooth the output signal,
it passes through a low pass filter with a cut-off frequency of fc = 700 kHz.

Digital inputs and outputs 6 digital inputs and 6 digital outputs are available on the 37-pin D-SUB
socket. The inputs and outputs are TTL-compatible. Furthermore, there are
inputs for 2 counters with 32 bit each.

Trigger input ADwin-light-16 is equipped with a trigger input (EVENT, see also chapter 5.2
"Digital Inputs and Outputs"). Thus, processes can be triggered by a signal
(trigger) and completely processed at once (see ADbasic manual, chapter
"Processes in the ADwin Operating System").

A serial interface (LS bus from Rev. B2, see page 16) enables the connection
of upt o 15 additiional modules.

Scope of delivery The standard scope of delivery for ADwin-light-16:

– ADwin-light-16 system

– USB or Ethernet connecting cable, length 1.8 m

– ADwin-CD-ROM

– Manual "Driver Installation"

– this hardware manual

LS bus decoder
(since rev. B2)

LS Low

LS High

6 digital inputs (TTL / 5V-CMOS) 6 digital outputs (TTL / 5V-CMOS)

16bit / 10µs

A
D

MUX
IN 1
IN 3
IN 5
IN 7
IN 9

IN 11
IN 13
IN 15

D
A

D
A

16bit

16bit

OUT 1

OUT 2

EVENT

InAmp
+

-

OP
+

-

OP
+

-

DIGOUT5:0

CLK 1
CLK 2

two 32 bit
impulse counters

 SHARC™
ADSP 21062

Analog Devices
8 MB external SDRAM

DIGIN5:0

to PCUSB
USB-

controller

ADwin-light-16 , manual version 3.5, November 2013 5

System description
System descriptionADwin

Additional items supplied with the type with external enclosure (L16-EXT) are:

– Power adapter: a PC slot plate with power supply socket and PC-inter-
nal three-pole connecting cable

– power supply cable for connection between the slot plate and L16-EXT.

VariantsADwin-light-16 is available as basic version with USB connection in several
variants.

Fig. 3 – Variants

TypesThe variants L16-EURO and L16-EXT can optionally be delivered with USB or
10/100 MBit Ethernet interface. The available types of the ADwin-light-16
basic version are described in the following table.

Please take into account that the power supply for the different variants varies:

– +5 Volt for L16-PCI and L16-EURO

– +10 ... +18 Volt for L16-EXT, since Rev. B +10 ... +36 Volt

PC plug-in board (L16-PCI) 19" plug-in board (L16-EURO)

external enclosure (L16-EXT)

Type Interface
USB Ethernet

PC plug-in board L16-PCI –
19" plug-in board (Euro) L16-EURO L16-EURO-ENET
External enclosure L16-EXT L16-EXT-ENET

Fig. 4 – Types of the ADwin-light-16 basic version

System description
System description ADwin

6 ADwin-light-16 , manual version 3.5, November 2013

2.2.1 Ordering options (later upgrade not possible)

ADwin-light-16 can be equipped with the following options:

– L16-CO1: counter option (description see page 23) with a 32-bit
up/down counter with four edge evaluation for incremental encoders.

– L16-DIO1: add-on module (description see page 25) with
• 32 digital inputs/outputs (programmable in groups of 8)
• one SSI decoder (since Rev. B)
• CAN interface (high speed; low speed as an alternative)
• two 32 bit up/down counters for impulse, period duration and duty

cycle measurements as well as a four edge evaluation for the
connection of incremental encoders.

– L16-DIO2: add-on module (description see page 41) with
• 32 digital input/outputs (programmable in groups of 8).
• one SSI decoder
• two 32 Bit up/down counters for impulse, period duration and duty

cycle measurements as well as a four edge evaluation for
incremental encoders.

– L16-DIO3: add-on module description see page 41) contains
32 digital inputs/outputs (programmable in groups of 8).

– L16-PWM1: Software add-on (description see page 53) cointains 1
PWM output and 1 SPI interface (Master).

– L16-Boot: Flash-EPROM bootloader for stand alone operation without a
PC (description see page 57). May only be ordered in combination with
an Ethernet interface.

– L16-Mount: Kit for installation of an L16-EXT system on a DIN top-hat
rail in an electrical control cabinet with isolated mountings.

Please take into account, that the counters of the add-on boards are not addi-
tionally available, but that they replace the counters of the basic version.
Therefore you cannot use the counters of different add-ons at the same time.

2.2.2 Accessories

The following equipment for ADwin-light-16 is available as accessory; descrip-
tion see page 58:

ADbasic – ADbasic, real-time development tool for all ADwin systems

– cable connectors for an external power supply (for L16-EXT only)

– external power supply ADwin-light-16-pow (necessary for notebook
operation)

ADwin-light-16 , manual version 3.5, November 2013 7

Operating Environment
Operating EnvironmentADwin

3 Operating Environment
The board of the ADwin-light-16 may only be operated in a closed casing
(already given with L16-EXT variant).

According to type and accessories (see chapter 2.2.1f, delivery options /
accessories) the system can be operated in 19" enclosures, control cabinets
or as a mobile system (e.g. in vehicels).

The ADwin-light-16 system must be earth-protected, in order to

– build a ground reference point for the electronic

– conduct interferencing energy to earth.

Connect the GND socket, which is internally connected with the ground refer-
ence point and the enclosure, via a short low-impedance solid-type cable to the
central earth connection point of your installation.

Galvanic connectionThe types with USB interface have a galvanic connection to the PC via USB
and possibly also via power supply.

The types with Ethernet interface have their data lines galvanically isolated, but
the ground potentials are connected, because the shielding of the Ethernet
connector (RJ-45) is connected with GND.

Excluding transient
currents

Transient currents, which are conducted via the enclosure or the shielding,
have influence on the measured signal.
If you want to prevent transient currents, please make sure that the shielding
is fully operative. Take measures for bleeding off interference, such as earthing
the shielding close to the entry into the control cabinet. The more frequently
you earth the shielding on its way to the machine the better the shielding will
operate.

Use cables with shielding on both ends for signal lines. Here too, you should
reduce the bleeding off of interferences via the enclosure by using screen clips.

Protective extra low
voltage

The ADwin-light-16 system is internally operated with a voltage of +5 V and
±15 V against GND and thus is not life-threatening. For operation with an
external power supply, the instructions of the manufacturer apply.

Ambient temperatureADwin-light-16 is designed for operation in dry rooms. The installation environ-
ment (PC or 19" rack) may have an ambient temperature within the range
+5 ... +50 °C, and a relative humidity of 0 ... 80 % (none condensing, see also
Annex).

Chassis temperatureThe temperature of the casing (surface temperature) of the type L16-EXT must
not exceed +55 °C, even under extreme operating conditions - e.g. in an elec-
trical control cabinet or if the system is exposed to the sun for longer periods
of time. Otherwise, you risk damage to the device or the output of undefined
data (values) which can cause damages to your measurement equipment
under unfavorable circumstances.

Start-up of the Hardware
Start-up of the Hardware ADwin

8 ADwin-light-16 , manual version 3.5, November 2013

4 Start-up of the Hardware
Do not connect any signal cables to ADwin-light-16 on start-up before taking
the following steps:

1. Software installation / hardware installation in the PC or 19“ rack.

Follow the instructions in the manual: "ADwin Driver Installation".

2. Set the operating environment as described in chapter 3.

3. Read chapter 5 "Inputs and Outputs" in this manual.

4. Only now connect the signal lines to the inputs and outputs.

Notes

Avoid direct contact with uninsulated parts in order to protect them against
electrostatic discharges.

Reliable power supply Please pay attention that a reliable power source is used.
For standard version, this concerns the PC, and otherwise the external power
supply, or if operated in a vehicle, the battery voltage.

If using current-limiting power supplies, please pay attention the current
demand at power-up which can be a multiple of the operating current. Detailed
information is contained in the Technical Data (Annex).

In case of power failure all unsaved data are lost. Undefined data could
cause damage to your equipment under unfavorable circumstances.

Check Data Communication

Start ADbasic and boot the ADwin system by clicking the boot button .

The display in the status line: "ADwin is booted" shows that the operating
system has been loaded appropriately and that ADbasic can establish a con-
nection to the ADwin system.

ADbasic programs Programming the ADwin systems is described in more detail in the ADbasic
manual.
Start with the programming examples in the ADbasic Tutorial.

ADwin-light-16 , manual version 3.5, November 2013 9

Inputs and Outputs
Inputs and OutputsADwin

5 Inputs and Outputs
ConnectionsThe ADwin-light-16 system has the following connectors (pin assignment see

next page):

– connector for USB or Ethernet

– 37-pin D-SUB socket ADwin I/O CONNECTOR for
• 8 analog inputs
• 2 analog outputs
• 6 each, digital inputs and outputs
• 1 digital trigger input
• 2 impulse/event counters with 32 bit
• Output for power supply +5V; L16-PCI also ±12V

– 9-pin D-SUB socket LS-BUS for the LS bus interface (since Rev. B2).

The variant L16-EXT has an additional GND socket (see earth protection,
page 7), a power input socket and a manual on/off switch.

All inputs and outputs may only be operated according to the specifications
given (see Annex A-1: Technical Data). In case of doubt, ask the manufacturer
of the equipment to which you intend to connect the ADwin-light-16 system
with.

Open inputs can cause errors – above all in an environment which is not free
of any interferences. For your own safety, connect unused inputs as close as
possible to the D-SUB socket on a defined level (e.g. GND). Separate these
inputs from open circuit lines.
Exception to this is the event input, which already has an internal pull-up resis-
tor (10 kΩ).

L16-EXT: Front

L16-PCI L16-EURO L16-EXT: Back
Fig. 5 – Connectors ADwin-light-16

LS
-B

us

AD
wi

n-
I/O

-C
ON

NE
CT

OR

ADwin-L16

USB

LS
-B

US

ADwin-L16

USB ADwin I/O CONNECTOR

10-36VDC

ON

POWER

GND

LS-BUS

Inputs and Outputs
Inputs and Outputs ADwin

10 ADwin-light-16 , manual version 3.5, November 2013

Fig. 6 – L16-EURO VG96 connector for power supply (female)

Fig. 7 – L16-EXT power connector (male)

Fig. 8 – Pin assignment LS-BUS (female)

L16-PCI L16-EURO and L16-EXT
Fig. 9 – Pin assignment inputs/outputs (female)

c b a

a b c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

+5V *
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DGND *

+5V *
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DGND *

+5V *
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DGND *

a b c

+10...36VPE

GND

1
2

3

5

4

3

2

1

9

8

7

6

SIGNAL GND
RESERVED
SIGNAL HIGH

RESERVED
SIGNAL LOW

RESERVED
RESERVED

+5V (max. 100mA)
+12V (max. 100mA)
DGND
DIGIN-5 / CNTR 2, CLK
DIGIN-4 / CNTR 1, CLK
DIGIN-3
DIGIN-2
DIGIN-1
DIGIN-0
ADC 11 INPUT(+)
ADC 09 INPUT(+)
ADC 07 INPUT(+)
ADC 05 INPUT(+)
ADC 03 INPUT(+)
ADC 01 INPUT(+)
ADC 15 INPUT(+)
ADC 13 INPUT(+)
DAC 2 OUTPUT
DAC 1 OUTPUT

RESERVED
-12V (max. 100mA)

EVENT INPUT
DIGOUT-5
DIGOUT-4
DIGOUT-3
DIGOUT-2
DIGOUT-1
DIGOUT-0

ADC 11 INPUT(-)
ADC 09 INPUT(-)
ADC 07 INPUT(-)
ADC 05 INPUT(-)
ADC 03 INPUT(-)
ADC 01 INPUT(-)
ADC 15 INPUT(-)
ADC 13 INPUT(-)

AGND DAC

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

+5V (max. 100mA)
RESERVED
DGND
DIGIN-5 / CNTR 2, CLK
DIGIN-4 / CNTR 1, CLK
DIGIN-3
DIGIN-2
DIGIN-1
DIGIN-0
ADC 11 INPUT(+)
ADC 09 INPUT(+)
ADC 07 INPUT(+)
ADC 05 INPUT(+)
ADC 03 INPUT(+)
ADC 01 INPUT(+)
ADC 15 INPUT(+)
ADC 13 INPUT(+)
DAC 2 OUTPUT
DAC 1 OUTPUT

RESERVED
RESERVED

EVENT INPUT
DIGOUT-5
DIGOUT-4
DIGOUT-3
DIGOUT-2
DIGOUT-1
DIGOUT-0

ADC 11 INPUT(-)
ADC 09 INPUT(-)
ADC 07 INPUT(-)
ADC 05 INPUT(-)
ADC 03 INPUT(-)
ADC 01 INPUT(-)
ADC 15 INPUT(-)
ADC 13 INPUT(-)

AGND DAC

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

ADwin-light-16 , manual version 3.5, November 2013 11

Inputs and Outputs
Inputs and OutputsADwin

Standard instructionsFor fast and easy programming there are standard instructions available in the
compiler ADbasic, which enable a user to easily measure or output data (see
also ADbasic manual). Use other instructions (such as direct register access)
only if extremely time-critical or special tasks require to do so. (see also
chapter 13).

More detailed information about the analog as well as the digital inputs and out-
puts can be found in the following chapters.

5.1 Analog Inputs and Outputs
Earth protectionThe variant L16-EXT has to be earth-protected, in order to perform measure-

ments without interference. For this, connect the GND socket via a low imped-
ance solid-type cable to the central earth connection point of your installation.
When using the variants PCI or EURO, the earth protection is made via PC or
the 19" rack.

For L16-EXT, the enclosure is connected to the protective earth conductor of
the PC via the GND-line of the power supply cable as well as via the GND-line
of the USB cable.

5.1.1 Analog Inputs

MultiplexerThe system has 8 analog measurement inputs, which are connected through
a multiplexer to the 16-bit analog-to-digital converter (ADC). The multiplexer
settling time is 6.5µs with a full scale range of 20V.

The inputs are all odd-numbered (ADC 01, ADC 03, ... ADC 15), which has to
be considered during programming.

DifferentialThe analog inputs are differential. For each of the measurement channels
there is a positive and a negative input, between which the voltage difference
is measured (pay attention to the potential of the input lines).

Please note, that the inputs do need a mass connection between the system’s
GND and the signal source. This is in addition to the connections to the positive
and negative input.

Fig. 10 – Input circuitry of an analog input

16-bit measurementThe signal at the multiplexer output is converted by a 16-bit analog-to-digital
converter (ADC); see Fig. 2 – Functional diagram (with USB interface). The
conversion time is 10µs (since Rev. B selectable per software: 2µs) at a res-
olution of 305 µV.

Complete measurementThe instruction ADC() executes a complete measurement with an ADC on one
analog input. Thus, this instruction considers for instance the settling time of
the multiplexer and assures perfect measurements (see also ADbasic man-
ual).

Rev. B with
sequential control

From Rev. B the signals of several selected analog inputs can be converted
(sequentially) with a single instruction. The inputs are selected with
Seq_Init, conversion is started with Start_Conv and results are read with
Seq_Read.

ADC x 330k

330k

InAmp+

-

ADC

MUX

PGA

G = 1, 2, 4, 8

+

-

GND

+

-

Inputs and Outputs
Inputs and Outputs ADwin

12 ADwin-light-16 , manual version 3.5, November 2013

5.1.2 Analog Outputs

DAC instruction The standard instruction DAC(number,value) checks each of the values
exceeding or falling below of the 16-bit value range. If the value is in the 16-bit
value range, the indicated value is output on the output number. If it is not, the
maximum or minimum value is output (see also ADbasic manual).

5.1.3 Calculation Basis

Voltage range The voltage range of the ADwin-light-16 system at the analog inputs and out-
puts is –10 V to +10 V (bipolar 10 V).

Allocation of digits and
voltage

The 65536 (216) digits are allocated to the corresponding voltage ranges of the
ADCs and DACs insofar that

– 0 (zero) digits correspond to the maximum negative voltage and

– 65535 digits correspond to the maximum positive voltage

The value for 65,536 digits, exactly 10 Volt, is just outside the measurement
range, so that there is a maximum voltage value of 9.999695 Volt for the 16-bit
conversion.

Fig. 11 – Zero offset in the standard setting of bipolar 10 Volt

Bipolar range leads to a zero offset which is shown below.

For the voltage range of –10 V ... +10 V applies UOFF = –10 V

Least Significant Bit The quantization level ULSB is the smallest digitally displayable voltage differ-
ence and is equivalent to the voltage of the least significant bit (LSB). The ULSB
is equivalent to the formula: 20 V / 216 = 305.175 µV.

The measured 16-bit value of the ADC is returned to the lower word of the
binary cell. Here you must also find the DAC value to be output.

+10

-10

0 32768 65536
0

[V]

[Digit]

Bit 31...16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

32-bit memory upper word 16-bit value of the ADC/DAC in the lower word

ADwin-light-16 , manual version 3.5, November 2013 13

Inputs and Outputs
Inputs and OutputsADwin

Conversion Digits Voltage

DACFor a DAC:

ADCFor an ADC:

Tolerances

Slight deviations regarding the calculated values may be within the tolerance
of the individual component. Two kinds of deviation are possible, which are
indicated in this manual (in LSB):

INL– The integral non-linearity (INL) defines the maximum deviation from the
ideal straight line of the conversion characteristics curve, covering the
whole input voltage range.

DNL– The differential non-linearity (DNL) defines the maximum deviation from
the ideal quantization level.

5.2 Digital Inputs and Outputs
Digital inputs/outputs6 digital inputs (DIGIN 00 … DIGIN 05) and 6 digital outputs (DIGOUT 00 …

DIGOUT 05) are available on the 37-pin D-SUB socket. The pin assignment be
found in figure 9 on page 10.

The inputs DIGIN 04 and DIGIN 05 are used as counter inputs at the same
time and may be read as digital inputs while being used as counters. This is not
true when using a DIO1-add-on (see page 25) or DIO2-add-on (see page 41).

The digital inputs and outputs are TTL-compatible and not protected against
overvoltage.
Do not use connections marked as "RESERVED". They are reserved for
upcoming changes or expansions and can cause damages to your system if
you do not pay attention to this fact.

Trigger input (EVENT)The ADwin-light-16 system is equipped with an external trigger input (EVENT).
An external signal (trigger) with rising edge may be used to start processes,
which are processed immediately and completely (see ADbasic manual, chap-
ter "Structure of an ADbasic-Program").

ProgrammingThe functions of the digital channels are easily programmed with ADbasic
instructions:

The instructions are included in the file <ADWL16.INC> and are described in
the ADbasic manual and in the online help.

Digits
UOUT U–

OFF
ULSB

---=

UOUT Digits ULSB UOFF+⋅=

Digits
UIN UOFF–

ULSB
------------------------------------=

UIN Digits ULSB UOFF+⋅=

Function Instruction
Read single digital input. DIGIN
Read all digital inputs. DIGIN_WORD
Set all digital outputs. DIGOUT_WORD
Set one digital output to level High. SET_DIGOUT
Set one digital output to level Low. CLEAR_DIGOUT

Inputs and Outputs
Inputs and Outputs ADwin

14 ADwin-light-16 , manual version 3.5, November 2013

5.3 Impulse/Event Counter
The ADwin-light-16 system is equipped with 2 impulse/event counters, each
with 32 bits, which may be configured or read out both together or individually.

With the options L16-CO1, L16-DIO1 or L16-DIO2 the counters described here
are replaced by other counters. You will find the corresponding description in
chapter 7 "CO1 Counter Add-On", chapter 8 "DIO1 Add-On" or chapter 9
"DIO2 / DIO3 Add-On".

5.3.1 Hardware

The figure shows the design of a single counter.

Fig. 12 – Block diagram of the impulse/event counter

The counters are externally clocked that means they increase their counter
values by incrementing at each positive edge at the clock input (CLK). Both
counters have a latch A, into which the counter value can be latched (under
program control) for read out.
The counters are controlled with special ADbasic instructions via the control
register. The instructions are described in Fig. 13 – Counter instructions - short
reference (below) and in the ADbasic manual (or online help).

Setting inputs The clock inputs are on pins 15 and 16 (see Fig. 9 – Pin assignment inputs/out-
puts (female), page 10); for the correct function TTL compatible signals are
required. More details and limit values can be found in the Technical Data in the
Annex. Both inputs can optionally be used as digital signal input (see also
chapter 5.2).

The inputs of the impulse/event counters have pull-down resistors. Neverthe-
less open inputs can cause errors in an environment which is not free of inter-
ference. Therefore set unused inputs to a defined level (e.g. GND).

5.3.2 Software

Include file The counters are easily programmed using ADbasic instructions. The instruc-
tions are part of an include file which must be included at the beginning of a
program: #INCLUDE ADWL16.INC

The instructions for both counters are shortly illustrated in the following table
and more detailed in the ADbasic manual or online help. You can configure
each counter individually or both counters together.

Control-Register

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

CLK

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

10
k

Counter no 2 1 Comment
Bit 1 0
Cnt_Clear() 0 0 no effect

1 1 clear counter*
* these functions are reset after being executed. All other functions are reset
by the opposing function..

Fig. 13 – Counter instructions - short reference

ADwin-light-16 , manual version 3.5, November 2013 15

Inputs and Outputs
Inputs and OutputsADwin

Sequence of instructionsPlease configure the counters in the following sequence:

1. disable specified counter (Cnt_Enable)

The instruction Cnt_Enable always accesses all counters. Even if the
status (disabled/enabled) of only one counter shall be changed, also
those counters must be configured whose status shall remain un-
changed.

2. clear counter (Cnt_Clear)

3. enable counter (Cnt_Enable)

For further processing of the counter value in the ADbasic program, transfer
the value into latch A and read it from there.

5.3.3 Evaluation of the counter contents

The binary counters generate 32 bit values. Distinguish clearly between the
evaluation of these binary values (e.g. differences) and the screen represen-
tation as decimal numbers.

unchanged bit patternTo correctly evaluate the counter contents you need its original 32 bit values,
especially with calculating differences. This is guaranteed only by use of
ADbasic variables of type Long.

The representation of 32 bit values in ADbasic often leads to confusion,
because the signless counter value is shown as signed decimal number (see
circle below). Consequently a transition between positive and negative range
of numbers is shown on the screen, which has no influence upon the evalua-
tion of the counter contents.

For the sake of completeness the following describes the interpretation of a
binary value:
The most significant bit (MSB) is interpreted as sign.
With a positive sign, the following 31 bits are directly interpreted as numerical
value; binary and decimal value are similar.
With a negative sign, the 31 bits are first inverted, one added, and then inter-
preted as numerical value (2’s complement); thus, negative decimal numbers
have an absolute value different to the corresponding binary value.

Calculate differences only with integer numbers (LONG).

"Lap overflow"For programming please remember that an "lap overflow" between the read
out of two counts - i.e. the current counter value "laps" the last counter value
which has been read - is not registered.

Cnt_Enable() 0 0 disable counter
1 1 enable counter (pay attention to running counters)

Cnt_Latch() 0 0 no effect
1 1 copy counter value into latch A *

Cnt_ReadLatch(#) read latch A (# = counter-no 1, 2)
Cnt_Read(#) copy counter value into latch A and read it

(# = counter no1, 2)

Counter no 2 1 Comment
Bit 1 0

* these functions are reset after being executed. All other functions are reset
by the opposing function..

Fig. 13 – Counter instructions - short reference

Inputs and Outputs
Inputs and Outputs ADwin

16 ADwin-light-16 , manual version 3.5, November 2013

Such a lap overflow occurs after some 3½ minutes with an input frequency of
20 MHz or after more than 14 minutes with 5 MHz.

Circle

Fig. 14 – Circle model for interpretation of counter values

5.4 LS Bus
ADwin-light-16 provides an interface for LS bus on a 9-pin DSub connector
(female); the pin assignemtn is shown on page 10.

The LS bus is a bi-directional serial bus with 5MHz clock rate (Low Speed).
The bus is a in-house-design to access external modules. The first module
available is HSM-24V which can process 24 Volt signals on 32 digital
channels.

The bus is set up as line connection, i.e. the ADwin interface and up to 15 LS
bus modules are connected to each other via two-way links. The last module
of the LS bus must have the bus termination activated. The maximum bus
length is 5m.

The LS bus modules are programmed with ADbasic instructions, which are
sent from the LS bus interface of the ADwin system. The instructions are
mostly specific for the module and are described in the manual of the LS bus
module (or in the online help).

The variants L16-PCI and L16-Euro have the DSub connector on a separate
cover plate. If the LS bus is not used, the connecting cable may be pulled from
from the main board and the cover removed.
Please note for reconnecting to have the connector socket pick up all 10 pins
of the on-board plug and to not have the cable twisted.

0000 0000h
FFFF FFFFh

7FFF FFFFh
8000 0000h

4
0
0
0

0
0
0
0
h

3
F
F
F

F
F
F
F
h

B
F
F
F

F
F
F
F
h

C
0
0
0

0
0
0
0
h

-1,073,741,824-1,073,741,825

1,073,741,823 1,073,741,824

2,147,483,647
-2,147,483,648

0
-1

inside:value of the binary
counter

outside:decimal number
in ADbasic

ADwin-light-16 , manual version 3.5, November 2013 17

Inputs and Outputs
Inputs and OutputsADwin

5.5 Time-critical tasks
Time-critical tasksFor extremely time-critical tasks instructions may be used which allow direct

access to control and data registers of the hardware (see ADbasic manual or
online help). These registers are to be found in the memory address area of the
ADSP (memory mapped). These instructions also allow optimization of the
program structure.

Contrary to the standard instructions ADC() and DAC() the instructions for
direct access do not have any test routines. Before using them, good knowl-
egde is required about programming and time and function sequences in an
analog-to-digital converter, because this kind programming is closely related to
the hardware.

Analog inputs and outputs

ADC()Execute the following ADbasic instructions instead of the standard instruction
ADC() according to the following order:

Program structureSet_Mux()
... 'wait for settling time
Start_Conv()
Wait_EOC() 'wait for end of conversion
ReadADC()

It is important to set a sufficient time-delay using additional programming
instructions between the instructions Start_Conv() and Set_Mux(), in
order to account for multiplexer settling time (see also ADbasic manual:
"Instruction Reference").

Use the waiting times shown below for instance for computing operations and
thus, save computing time:

– Settling time of the multiplexer: At a maximum voltage jump of 20 V it is
6.5 µs.

– Conversion time of the 16 bit ADC: 10 µs; since Rev. B: 2µs optional.

Hardware addresses of the control and data registers

Using the instructions Peek and Poke (see ADbasic manual or online help)
you can directly access the control and data registers. This may accelerate the
processing of the program, e.g.:

ADC– a measurement can be executed very quickly.

DAC– you can write very quickly into one or more DAC registers, and the out-
put may be synchronously started.

Please ensure that the calculated analog outputs values are within the range
limits.

Inputs and Outputs
Inputs and Outputs ADwin

18 ADwin-light-16 , manual version 3.5, November 2013

The hardware addresses of the registers may be found in the following tables,
grouped as analog inputs, analog outputs, digital inputs/outputs and counters.

Please take into account that some registers have an influence on several pro-
cesses.

Address Function Bit no Comment
[HEX] 31-16 15-10 9 8 7 6 5 4 3 2 1 0

20 40 00 00 set multiplexer to input channel
(ADC 01... ADC 15) - - - - - - 0 0 0 n n n "nnn" binary = 0...7 decimal;

selected channel = nnn*2 + 1

20 40 00 10 start conversion: ADC#1 - - - - - - - 1 1 1 1 s s = 0 : start conversion
s = 1 : no effect

20 40 00 20 conversion status(EOC): ADC#1 - - - - - - - - - - - e e = 0 :end conversion
e = 1 : conversion is running

20 40 00 30 read register: ADC#1 - x x x x x x x x x x x
x : result of the conversion

20 40 01 00 read register and start conversion:
ADC#1 - x x x x x x x x x x x

Fig. 15 – ADC hardware addresses of the control and data registers

Address Function Bit no Comment
[HEX] 31-16 15-10 9 8 7 6 5 4 3 2 1 0

20 40 00 10 start conversion: all DAC synchro-
nously - - - - - - - 1 1 s 1 1 s = 0 : start conversion

s = 1 : no effect
20 40 00 50 write only to the register: DAC #1 - x x x x x x x x x x x

x : digital value to be converted

20 40 00 60 write only to the register: DAC #2 - x x x x x x x x x x x

20 40 02 00 write to the register and start conversion
immediately: DAC #1 - x x x x x x x x x x x

20 40 02 10 write to the register and start conversion
immediately: DAC #2 - x x x x x x x x x x x

Fig. 16 – DAC hardware addresses of the control and data registers

Address Function Bit no Comment
[HEX] 31:16 15:6 5 4 3 2 1 0
20 40 00 B0 input register DIGIN-05...DIGIN-00 - - x x x x x x x : digital value read in
20 40 00 C0 output register DIGOUT-05 ... DIGOUT-00 - - x x x x x x x : digital value to be output

20 40 00 C4 DIGOUT Bit-SET-Register
- - 0 0 0 0 0 0 no effect
- - 1 1 1 1 1 1 set bit

20 40 00 C8 DIGOUT Bit-CLEAR-Register
- - 0 0 0 0 0 0 no effect
- - 1 1 1 1 1 1 clear bit

Fig. 17 – DIO hardware addresses of the control and data registers

Address Function Bit no Comment
[HEX] 31:16 15:6 5 4 3 2 1 0
20 40 02 04 contents of latch A, counter #1 x x x x x x x x x : latched counter value
20 40 02 14 contents of latch A, counter #2 x x x x x x x x x : latched counter value

20 40 03 00 enable/disable counter (= CNT_ENABLE())
- - - - - - 0 0 counter disabled
- - - - - - 1 1 counter enabled

20 40 03 10 clear counter(= CNT_CLEAR())
- - - - - - 0 0 no effect
- - - - - - 1 1 clear counter *

20 40 03 20 latch counter (= CNT_LATCH())
- - - - - - 0 0 no effect
- - - - - - 1 1 latch counter value into latch A *

* The bits are reset after the function has been executed. All other functions are reset by the opposing function.

Fig. 18 – Counter hardware addresses of the control and data registers

ADwin-light-16 , manual version 3.5, November 2013 19

Calibration
CalibrationADwin

6 Calibration
The two digital-to-analog (DAC) and the analog-to-digital (ADC) converter of
the ADwin system have been calibrated in factory. In accordance with the reg-
ulations for keeping the measurement accuracy in your field of application, the
systems must be calibrated in regular time intervals.

Calibration is made via software. The program <L16Calib.exe> is located in
the Start folder at <Programs\ADwin\Calibration\L16Calib>.

You need the following tools for the calibration:

– a digital multimeter (DMM) with a resolution of 30 µV.

– a reference voltage source with a resolution of 30 µV. Optionally you
connect DAC 1 to ADC 01(+), DAC 2 to ADC 03(+) and AGND DAC
with ADC 01(-) and ADC 03(-), for instance in form of a test connector.
You need these connections also for the calibration diagram.

– connection cables from the inputs/outputs to the reference voltage
source and to the measurement device.

Step 1Connect your ADwin-light-16 system with the PC and configure it with the pro-
gram <ADconfig.exe>.

Step 2Start the calibration program <L16Calib.exe>. The window "ADwin-
light-16 Calibration Tool" appears.

Select the device number of the system to be calibrated and confirm by press-
ing "OK".
You will get a warning, if you haven’t selected an ADwin-light-16 system or if
you have selected one with an older firm ware version. You can ignore the
warning with "YES" or return to the previous windows with "NO".

An overview window appears. In the header the selected device number is
displayed.

Calibration
Calibration ADwin

20 ADwin-light-16 , manual version 3.5, November 2013

The upper field shows the current measured values at the inputs ADC 01 and
ADC 03. Below you will find the calibration settings for Offset and Gain of
both DACs and the ADC; there you can directly enter values. You start calibra-
tion of the relevant converter with "Calibrate …"
At the right side ("Test Output") you can enter voltage values in the fields DAC1
and DAC2, which will automatically be output on the corresponding outputs.

For Revision B the overview window has additional items: The PGA field so set
the gain value and the Info button to show some version information of the
device.

All settings you have made are automatically saved.
In the lower line you can undo all inputs with "Undo & Exit" and leave the cal-
ibration program. "Diagram" displays in a graph the accuracy of the current
calibration setting. If you leave the program with "Exit" all settings remain.

Calibrate the converters in the order you like (only with reference voltage
source). The calibration of a converter is effected in 3 steps; you can switch
between the windows of the steps by using the forward/backward buttons.
Calibration is also possible without reference voltage source, but it will not be
so precise. Calibrate first the DAC1 and DAC2, and then the ADC.

Step 3 The 3 levels for calibrating a converter are described below, for the DAC in
the left column and for the ADC in the right column.

1. Connect the external device (DMM/voltage source)
Select the corresponding key "Calibrate ..." for calibrating a con-
verter; the first window appears.:

Please note Fig. 9 – Pin assignment inputs/outputs (female).
Select "Next Step >>".

Connect a DMM with the pins
AGND DAC and DAC1 or DAC2.

Connect the voltage source (or a
DAC output) with the inputs ADC 01
or ADC 03.

ADwin-light-16 , manual version 3.5, November 2013 21

Calibration
CalibrationADwin

2. Set offset

Select "Next Step >>".

3. Set gain

The calibration for this converter has finished. Select "OK". Repeat step 3 for
the other converters if necessary.

Adjust the offset value at the scroll-
bar in such a manner that your digi-
tal multimeter displays -10 V.

Set your voltage source to 0 V (set-
point). The setting of the ADC to this
value is made automatically.
Adjust the offset value at the scroll-
bar in such a manner that the set-
point at the ADC 01 is displayed in
the overview window.

With Rev. B all settings of this step
are done automatically.

Adjust the offset value at the scroll-
bar in such a manner that your digi-
tal multimeter displays -10 V.

Set your voltage source to 9,375 V
(setpoint). The setting of the ADC to
this value is made automatically.
Adjust the offset value at the scroll-
bar in such a manner that the set-
point at the ADC 01 is displayed in
the overview window.

With Rev. B all settings of this step
are done automatically.

Calibration
Calibration ADwin

22 ADwin-light-16 , manual version 3.5, November 2013

Step 4 With a diagram (button Diagram in the overview window) you can check the
accuracy of the calibration.
Connect first the output DAC 1 with the input ADC 01 as well as the output
DAC 2 with the input ADC 03.

The program outputs the values 0...65,535 digits on both DACs, compares
them to the measured input values and displays the deviation in graphs.
Graph 1 (red) for DAC 1 / ADC 01 and graph 2 (green) for DAC 2 / ADC 03.
The deviation should be smaller than 5 digits.

You can print the graph with Print Graph (a color printer is recommended).
To do so, enter the serial number of your ADwin system, so that you can allo-
cate the printout later. On the printout you will also find the calibration settings
and the date of print.

With Close you return to the overview window.

Step 5 The calibration is finished.

ADwin-light-16 , manual version 3.5, November 2013 23

CO1 Counter Add-On
CO1 Counter Add-OnADwin

7 CO1 Counter Add-On
The counter add-on CO1 (option L16-CO1) provides a 32-bit up/down counter
with four edge evaluation and replaces the counter of the basic version (Fig.
19 – Block diagram of the L16-CO1 counter add-on shows the design of the
counter).

Fig. 19 – Block diagram of the L16-CO1 counter add-on

7.1 Hardware
The counter is externally clocked and has a four edge evaluation for the con-
nection of an encoder. The counter is read out via latch A, the control is made
with ADbasic instructions via a control register (see "CO1 instructions, short
reference" on page 24).

The four edge evaluation converts the digital input signals A and B (which are
90 degrees off-phase) into a clock (CLK) and direction signal (DIR) for the
counter. Here a clock signal is generated from each edge of the A and B sig-
nals. The count direction (DIR) is determined by the order of the rising and fall-
ing edges of these signals.

Setting inputsThe clock inputs A and B are on the pins 15 and 16 of the D-SUB socket (see
pin assignment below); TTL-compatible signals are necessary for the correct
function. More details and limit values can be found in the Technical Data in the
Annex.

Both inputs can be used optionally as digital signal input (see also chapter 5.2).

Although all inputs of the CO1 add-on have a pull-down resistor, open-ended
inputs can cause errors in an environment which is not free of interferences.
Therefore set unused inputs on a defined level (e.g. GND).

Control-Register

32 bit Counter (#1)

32 bit Latch (#1)

CLK

EN
CLR

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

A
DIRB

4k
7

4k
7

DIR

L16-PCI L16-EURO and L16-EXT
Fig. 20 – Pin assignment of L16-CO1

+5V (max. 100mA)
+12V (max. 100mA)
DGND
DIGIN-5, CNTR 1: B
DIGIN-4, CNTR 1: A
DIGIN-3
DIGIN-2
DIGIN-1
DIGIN-0
ADC 11 INPUT(+)
ADC 09 INPUT(+)
ADC 07 INPUT(+)
ADC 05 INPUT(+)
ADC 03 INPUT(+)
ADC 01 INPUT(+)
ADC 15 INPUT(+)
ADC 13 INPUT(+)
DAC 2 OUTPUT
DAC 1 OUTPUT

RESERVED
-12V (max. 100mA)

EVENT INPUT
DIGOUT-5
DIGOUT-4
DIGOUT-3
DIGOUT-2
DIGOUT-1
DIGOUT-0

ADC 11 INPUT(-)
ADC 09 INPUT(-)
ADC 07 INPUT(-)
ADC 05 INPUT(-)
ADC 03 INPUT(-)
ADC 01 INPUT(-)
ADC 15 INPUT(-)
ADC 13 INPUT(-)

AGND DAC

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

+5V (max. 100mA)
RESERVED
DGND
DIGIN-5, CNTR 1: B
DIGIN-4, CNTR 1: A
DIGIN-3
DIGIN-2
DIGIN-1
DIGIN-0
ADC 11 INPUT(+)
ADC 09 INPUT(+)
ADC 07 INPUT(+)
ADC 05 INPUT(+)
ADC 03 INPUT(+)
ADC 01 INPUT(+)
ADC 15 INPUT(+)
ADC 13 INPUT(+)
DAC 2 OUTPUT
DAC 1 OUTPUT

RESERVED
RESERVED

EVENT INPUT
DIGOUT-5
DIGOUT-4
DIGOUT-3
DIGOUT-2
DIGOUT-1
DIGOUT-0

ADC 11 INPUT(-)
ADC 09 INPUT(-)
ADC 07 INPUT(-)
ADC 05 INPUT(-)
ADC 03 INPUT(-)
ADC 01 INPUT(-)
ADC 15 INPUT(-)
ADC 13 INPUT(-)

AGND DAC

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

CO1 Counter Add-On
CO1 Counter Add-On ADwin

24 ADwin-light-16 , manual version 3.5, November 2013

7.2 Programming
Include file The CO1 add-on is easily programmed by using ADbasic instructions. The

instructions are part of an include file which must be included at the beginning
of a program:

#Include ADWL16.INC

The instructions for the CO1 add-on are shortly illustrated in the following table
and more detailed in the ADbasic manual or online help.

Please evaluate the counter contents only with variables of type Integer or
Long, above all when you want to evaluate differences or the count direction
(see also page 15).

The count direction (up/down) can reliably be derived from the

sign of the difference: [new counter value] minus [old counter value]

and not from the comparison of the counter values.

For extremely time-critical tasks you can use instructions with which you have
direct access to control and data registers of the counter. In the table the cor-
responding hardware addresses are illustrated.

The hardware addresses of the CO1 counters are identical with or replace
those of the basic counter version.

Counter no 1 Comment
Bit 0
Cnt_Clear() 0 no effect

1 clear counter*
Cnt_Enable() 0 disable counter

1 enable counter (pay attention to running counters)

Cnt_Latch() 0 no effect
1 copy counter value into latch A *

Cnt_ReadLatch(#) read latch A (# = counter no 1)
Cnt_Read(#) copy counter value into latch A and read it

(# = counter no 1)
* The bits are reset after the function has been executed. All other functions are reset by the
opposing function.

Fig. 21 – CO1 instructions, short reference

Address
[HEX] Function

Bit number
Comment

31:01 00

20 40 02 04 contents of latch A,
counter #1 x x x : latched counter value

20 40 03 00 enable counter
CNT_ENABLE()

- 0 disable counter

- 1 enable counter (pay attention to running counters)

20 40 03 10 clear counter
CNT_CLEAR()

- 0 no effecft

- 1 clear counter*

20 40 03 20 latch counter
CNT_LATCH()

- 0 no effect

- 1 latch counter*

* The bits are reset after the function has been executed. All other functions are reset by the
opposing function.

Fig. 22 – CO1 hardware addresses of the control and data registers

ADwin-light-16 , manual version 3.5, November 2013 25

DIO1 Add-On
DIO1 Add-OnADwin

8 DIO1 Add-On
With the DIO1 add-on you are additionally provided with:

– 32 digital inputs/outputs (programmable in groups of 8), page 28

– 2 counters, page 29: 32 bit up/down counters for impulse, period dura-
tion and duty cycle measurements as well as a four edge evaluation for
connection of incremental encoders.
Inputs can be set to single-ended or differential via DIP siwtches.

The counters of the basic version are replaced by the DIO1 counters.

– CAN interface (high-speed), page 36

– 1 SSI decoder (page 40), since Rev. B.

The SSI decoder enables the connection of an incremental encoder with
SSI interface. The inputs are available on the COUNTER socket, the sig-
nals are differential and have RS422/485 levels (5V).

The block diagram shows the basic functions of an L16 system with the addi-
tional functions of the DIO1 add-on (as USB version).

The pin assignment at the connection "ADwin I/O-CONNECTOR" is similar to
the basic version, except one difference: The pins 15/16 - in the basic version
each with double functions - are now solely used as DIGIN-04 and DIGIN-05.

The pin assignment of the LS bus interface is shown on page 10.

Fig. 23 – Block diagram of L16-DIO1 (with USB interface)

6 digital inputs (TTL / 5V-CMOS) 6 digital outputs (TTL / 5V-CMOS)

16bit / 10µs

A
D

MUX
IN 1
IN 3
IN 5
IN 7
IN 9

IN 11
IN 13
IN 15

D
A

 SHARC™
ADSP 21062

Analog Devices
8 MB external SDRAM

D
A

16bit

16bit

OUT 1

OUT 2

EVENT

InAmp
+

-

OP
+

-

OP
+

-

DIGOUT5:0DIGIN5:0

to PC
USB-

controller USB

ad
dr

es
s

bu
s

&
 d

at
a

bu
s

A/CLK
B/DIR

32 bit up-/down-counter #1
modes: a) impuls/event counter

b) period width measurement
c) PWM analysisCLR/LATCH

32 bit up-/down-counter #2
modes: a) impuls/event counter

b) period width measurement
c) PWM analysis

A/CLK
B/DIR

CLR/LATCH
SSI decoder

SSI, DATA

SSI, CLK

CAN-bus-
controller

CAN(+)

CAN(-)

8 dig. I/O-lines (TTL / 5V-CMOS)

8 dig. I/O-lines (TTL / 5V-CMOS)DIO7:0

DIO15:8

DIO23:16

DIO31:24

8 dig. I/O-lines (TTL / 5V-CMOS)

8 dig. I/O-lines (TTL / 5V-CMOS)

LS bus decoder
(since rev. B2)

LS Low

LS High

DIO1 Add-On
DIO1 Add-On ADwin

26 ADwin-light-16 , manual version 3.5, November 2013

Hardware configuration There are several DIP switches on the DIO1 board, with which you can change
the settings for the counters and the CAN interface.

The setting can only be made when the board is not installed or when the cas-
ing is opened. Please pay attention to the safety instructions at the beginning
of this documentation.

Reassambling is made in reverse order.

Position of DIP switches The exact position of the DIP switches is shown in the following figure (pay
attention to the revision). The dotted frame shows the allocation of the DIP
switches to the counters 1 and 2 (upper half, half at right) and to the CAN inter-
face (lower left corner).

Fig. 24 – Overview of the L16-EURO-DIO1 with pin assignments
For other L16 variants, the plugs are named identical.

AD
wi

n
 I/O

-C
ON

NE
CT

OR

ADwin-L16 + EXPANSION-BOARD

USB

DI
GI

TA
L

I/O

CO
UN

TE
R

CA
N

differential

inputs

single-endedinputs

+5V (max. 100mA)
RESERVED
DGND
DIGIN-5
DIGIN-4
DIGIN-3
DIGIN-2
DIGIN-1
DIGIN-0
ADC 11 INPUT(+)
ADC 09 INPUT(+)
ADC 07 INPUT(+)
ADC 05 INPUT(+)
ADC 03 INPUT(+)
ADC 01 INPUT(+)
ADC 15 INPUT(+)
ADC 13 INPUT(+)
DAC 2 OUTPUT
DAC 1 OUTPUT

RESERVED
RESERVED

EVENT INPUT
DIGOUT-5
DIGOUT-4
DIGOUT-3
DIGOUT-2
DIGOUT-1
DIGOUT-0

ADC 11 INPUT(-)
ADC 09 INPUT(-)
ADC 07 INPUT(-)
ADC 05 INPUT(-)
ADC 03 INPUT(-)
ADC 01 INPUT(-)
ADC 15 INPUT(-)
ADC 13 INPUT(-)

AGND DAC

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

DGND
+5V (max. 100mA)
EVENT INPUT
DIO-BIT 23
DIO-BIT 22
DIO-BIT 21
DIO-BIT 20
DIO-BIT 19
DIO-BIT 18
DIO-BIT 17
DIO-BIT 16
DIO-BIT 07
DIO-BIT 06
DIO-BIT 05
DIO-BIT 04
DIO-BIT 03
DIO-BIT 02
DIO-BIT 01
DIO-BIT 00

DGND
+5V (max. 100mA)

DIO-BIT 31
DIO-BIT 30
DIO-BIT 29
DIO-BIT 28
DIO-BIT 27
DIO-BIT 26
DIO-BIT 25
DIO-BIT 24
DIO-BIT 15
DIO-BIT 14
DIO-BIT 13
DIO-BIT 12
DIO-BIT 11
DIO-BIT 10
DIO-BIT 09
DIO-BIT 08

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

RESERVED
EVENT INPUT

SSI, DATA (-)
SSI, CLK (-)
DGND

SSI, DATA (+)
SSI, CLK (+)

+5 V (max. 100 mA)
CNTR 1, A/CLK
CNTR 1, B,DIR

CNTR 1, CLR/LATCH
CNTR 2, A/CLK
CNTR 2, B/DIR

CNTR 2, CLR/LATCH

RESERVED
RESERVED

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

CLK/A 1, CNTR
DIR/B 1, CNTR

LATCH/CLR 1, CNTR
CLK/A 2, CNTR
DIR/B 2, CNTR

LATCH/CLR 2, CNTR

RESERVED
EVENT INPUT

DGND
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

+5 V (max. 100 mA)
CNTR 1, A
CNTR 1, B

CNTR 1, CLR/LATCH
CNTR 2, A
CNTR 2, B

CNTR 2, CLR/LATCH

RESERVED
RESERVED

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

9

RESERVED
CAN(-)
GND

GND
CAN(+)

RESERVEDRESERVED

variant How to proceed
L16-EURO,
L16-PCI

Deinstalling the printed circuit board (PCB)

The deinstallation of the board is made in reverse order to
the installation, which is described in the manual "ADwin
Driver Installation".

L16-EXT Opening the casing

You open the casing by unscrewing the upper Allen screws
(2 mm) at both sides and loosening the lower screws. Slope
the side plates and pull off the upper part of the casing. Note
the orientation of the casing for the reinstallation.
You are now looking directly on the DIO1 PCB.

ADwin-light-16 , manual version 3.5, November 2013 27

DIO1 Add-On
DIO1 Add-OnADwin

Counters 1 and 2: For differential mode set all 3 DIP switches of the corre-
sponding counter into upward position (direction see also fig. 25); for sin-
gle-ended operation set the switches into downward position.

CAN interface: If a termination is necessary, set the DIP switch to the top (L16
Rev. B) or toward the CAN connector (L16 Rev. A).

Fig. 25 – Position of the DIP switches on the DIO1 PCB

CNTR #1

CNTR #2

diff.
s.-e.

diff.
s.-e.

CAN-Term.
offon

LM
39

40

74
H

C
T2

45

74
H

C
T2

45

A
D

M
70

6

O
C

X
16

M
H

z

O
C

X
40

M
H

z

MAX
3098

MAX
3098

XILINX-FPGA
XCS20XL

74
H

C
T2

45

74
H

C
T2

45

O
P

A
21

32

A
82

C
25

0

74
A

C
T1

62
45

CAN-
Controller
AN82527

LightExp03

035

035
17

S3
0

LP
C

L16-DIO1 Rev. A

CAN-
Term

74
H

C
T2

45

74
H

C
T2

45

A82
C250

CAN-
Controller
AN82527
(CC770)DCR010505U525525

XC
3S

40
0

XI
LIN

X®

CNTR #1

CNTR #2

ADM
706

OCX
16MHz

OCX
40MHz

M
AX

30
98

M
AX

30
98

74
H

C
T2

45

74
H

C
T2

45

·100

L16BD011002

525

LVC4245ALVC4245A

48
5

48
5

48
5

XCF04S

diff.

S

D

S

74
LS

19
A

CAN

LS CNTR

250F

1
00

LT
LS

1
00

LT
LS

1
00

LT
LS

D

s.e.

diff.

s.e.

on

off

L16-DIO1 Rev. B

DIO1 Add-On
DIO1 Add-On ADwin

28 ADwin-light-16 , manual version 3.5, November 2013

Find more information on setting of the DIP switches in chapter 8.2 "Counters"
and chapter 8.3 "CAN-Bus".

The technical data of the DIO1 add-on is shown in the Annex.

8.1 Digital Inputs and Outputs
In addition to the digital inputs/outputs of the basic version (DIGIN, DIGOUT,
EVENT), you have 32 digital inputs or outputs (abbrev. DIO) on the 37-pin
D-SUB socket "Digital I/O". They are programmable in groups of 8 each as
inputs or outputs.

Trigger input There is an external trigger input (EVENT) on the following D-SUB sockets:
ADwin I/O Connector, Counter and Digital I/O. The sockets "Counter"
and "Digital I/O" are galvanically connected and have the same pull-up resistor
of 4.7 kΩ, so that you can select one of the inputs if necessary. Use only one
of the three Event inputs.

With an external signal (trigger) at the event input a process can be triggered,
and can be processed immediately and completely (see ADbasic manual,
chapter: "Structure of an ADbasic program").

The digital inputs are TTL compatible and are not protected against overvolt-
age.

Power-up configuration After power-up all connections are configured as inputs; this corresponds to
the instruction Conf_DIO_E(0). With the instruction

Conf_DIO_E(n)

You program the 32 DIO lines in 4 groups with 8 lines each as input or output
(see online help). The following table shows the 16 possible configurations you
will get with this instruction. In order to use this instruction you have to include
the file <adwl16.inc>.

More information about programming of time-critical tasks can be found in
chapter 5.5 on page 17.

Conf_DIO_E(n) DIO 31 ... DIO 24 DIO 23 ... DIO 16 DIO 15 ... DIO 08 DIO 07... DIO 00

0 IN IN IN IN

1 IN IN IN OUT

2 IN IN OUT IN

3 IN IN OUT OUT

4 IN OUT IN IN

5 IN OUT IN OUT

6 IN OUT OUT IN

7 IN OUT OUT OUT

8 OUT IN IN IN

9 OUT IN IN OUT

10 OUT IN OUT IN

11 OUT IN OUT OUT

12 OUT OUT IN IN

13 OUT OUT IN OUT

14 OUT OUT OUT IN

15 OUT OUT OUT OUT

 ADbasic instruc-
tions to use:

Digin_Word2_E
Digout_Word2_E
Digout_Set2_E
Digout_Reset2_E

Digin_Word1_E
Digout_Word1_E
Digout_Set1_E
Digout_Reset1_E

Fig. 26 – Configurations with Conf_DIO_E

ADwin-light-16 , manual version 3.5, November 2013 29

DIO1 Add-On
DIO1 Add-OnADwin

8.2 Counters
CounterThe add-on DIO1 provides two 32-bit counters, which you can configure and

read out individually or all together. You can transfer single-ended or differen-
tial signals to the inputs; operating mode to be set via DIP switches, see below.
The counters replace the incremental counters of the basic version.

LatchThe counters can be internally or externally clocked and are read out via
accompanying latches. All counters have a latch A as well as a latch B (the fig-
ure shows the design of a single counter).

The counter values can be cleared or transferred into a latch by using program-
ming instructions or (at special configurations) when there is an external signal
at CLR/LATCH.

There are the following operating modes: event counting (external clock) and
pulse width measurement (internal clock), see also chapter 8.2.2 / 8.2.3:

External clocking4. Event counting: Incrementing/decrementing of the counter is caused
by external square-wave signals at the inputs A/CLK and B/DIR. A sig-
nal at CLR/LATCH either sets the counter to zero (CLR) or has the
counter value written into the latch (LATCH).

There are the modes:
• Clock and direction: Every positive edge at CLK increments or

drecrements the counter value by one. The signal at DIR
determines the counting direction (0 = down, 1 = up).

• Four edge evaluation: Every edge of the signals (off-phase by
90 degrees) at A/CLK and B/DIR causes the counter to
increment/decrement. The counting direction is determined by
the sequence of the rising/falling edges of these signals. This
mode is particularly used for incremental encoders.

Internal clock5. Pulse width measurement: Incrementing/decrementing of the counter
is caused by an internal reference clock with a signal frequency of
20 MHz (optionally 5 MHz after scaler). The square-wave signal at
CLR/LATCH is evaluated: With every positive edge of the input signal
the counter value is written to latch A, with a negative edge to latch B.

You can calculate:
• the period duration of the input signal at CLR/LATCH from the

values in latch A and latch B.
• the impulse width and pause time from the values in latch A and

latch B.

Fig. 27 – Block diagram of DIO1 counter
NOTE: Only Counter #1 is shown for clarity of the schematic. The 20 MHz clock signal is distributed to second divider/counter.

G

20 MHz

Control-Registers

32 bit Latch B (#1, #2)

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

A / CLK

A
D

w
in

-li
gh

t-1
6

bu
s

Data

Data

Data

B / DIR

CLR /
 LATCH

DIRDIR

CNT_INPUTMODE

CNT_SET
(CNT_MODE)

CNT_CLEAR
CNT_LATCH

CNT_SET
(CNT_MODE)

CNT_MODE

Up

4-edge-
evaluation

ref.-CLK

4k
7

4k
7

4k
7

to fref-switch of
second counter

Divider
÷ 4

DIO1 Add-On
DIO1 Add-On ADwin

30 ADwin-light-16 , manual version 3.5, November 2013

Selecting the operating mode of the counter inputs

You can use the counter inputs in single-ended or differential mode. The set-
ting is not fixed upon delivery. Therefore set the operating mode at the DIP
switches of the DIO1 printed circuit board (position of DIP switches see fig. 25).

For differential mode set all 3 DIP switches of the corresponding counter into
upward position (direction see also fig. 25); for single-ended operation set the
switches into downward position.

8.2.1 Programming

The DIO1 counters are easily programmed by using ADbasic instructions. The
instructions are part of an include file which must be included at the beginning
of a program:

#Include ADWL16.INC

The instructions for the DIO1 counters are shortly illustrated in the following
table and more detailed in the ADbasic manual or online help.

With these instructions of the table matrix you will be able to configure every
counter individually or both counters together.

Please initialize the counters in the following order:

1. disable specified counter (Cnt_Enable)

The instruction Cnt_Enable always accesses all counters. Even if you
want to change the status (disabled/enabled) of only one counter, you

Counter no 2 1 Comment
Bit 1 0
Cnt_Clear() 0 0 no effect

1 1 clear counter*
Cnt_Enable() 0 0 disable counter

1 1 enable counter (pay attention to running counters)
Cnt_InputMode() 0 0 set CLR/LATCH input to CLR mode

1 1 set CLR/LATCH input to LATCH mode
Cnt_Latch() 0 0 no effect

1 1 copy counter value to latch register A*
Cnt_Mode() 0 0 external clock input

1 1 internal reference clock (20MHz / 5MHz)
Cnt_Set() 0 0 Cnt_Mode bit = 0 : 4 edge evaluation (A & B)

Cnt_Mode bit = 1 : internal reference clock of 20MHz
1 1 Cnt_Mode bit = 0 : clock and direction inputs (CLK & DIR)

Cnt_Mode bit = 1 : internal reference clock of 5MHz
Cnt_ClearEnable() 0 0 disable CLR input

1 1 enable CLR input
Cnt_GetStatus(#) ** read status register (for the meaning of the bits see ADbasic manual

or online help)
Cnt_Read(#) ** copy counter value to latch A and read it
Cnt_ReadLatch(#) ** read out latch A (triggered by positive edge)
Cnt_ReadFLatch(#) ** read out latch B (triggered by a negative edge)
* The bits are reset after the function has been executed. All other functions are reset by the opposing function.
** # = counter no. 1 or 2

Fig. 28 – DIO1 counter instructions - short reference

ADwin-light-16 , manual version 3.5, November 2013 31

DIO1 Add-On
DIO1 Add-OnADwin

also have to configure the counters whose status shall remain un-
changed.

2. set operating mode (Cnt_Mode, Cnt_Set, Cnt_InputMode)

Please take into account that the instruction Cnt_Set is dependent on
the instruction Cnt_Mode.

3. clear counter (Cnt_Clear)

4. enable counter (Cnt_Enable)

Evaluate the counter value only with Integer or Long variables. ADbasic
then keeps internally the read bit patterns unmodified and considers automat-
ically the transition from the positive to the negative numerical range (see also
page 15). Then you get:

The count direction (up or down) can reliably be derived from the

sign of the difference: [new counter value] minus [old counter value]

and not from the comparison of the counter value.

Calculate the difference only with integer variables. (Integer, Long).

A task can be very quickly processed if you access the control and data regis-
ters directly (see chapter 5.5 as well as ADbasic manual). The hardware
addresses of the DIO1 add-on are illustrated in the following table (see also
Fig. 28 – DIO1 counter instructions - short reference).

Address Function Bit Comment
[hex] 31:16 15:10 9 8 7 6 5 4 3 2 1 0
20 40 02 04 contents of latch A, counter #1 x x x x x x x x x x x x x : contents of the latch
20 40 02 08 contents of latch B, counter #1 x x x x x x x x x x x x x : contents of the latch
20 40 02 14 contents of latch A, counter #2 x x x x x x x x x x x x x : contents of the latch
20 40 02 18 contents of latch B, counter #2 x x x x x x x x x x x x x : contents of the latch

20 40 03 00 enable/disable counter
Cnt_Enable() - - - - - - - - x x x x x = 0 : disable counter

x = 1 : enable counter

20 40 03 10 clear counter Cnt_Clear() - - - - - - - - x x x x x = 0 : no effect
x = 1 : clear counter

20 40 03 20 latch counter Cnt_Latch() - - - - - - - - x x x x x = 0 : no effect
x = 1 : latch counter

20 40 03 30 input:: CLR or LATCH - - - - - - - - x x x x x = 0 : CLR input
x = 1 : LATCH input

20 40 03 40 impulse/event counter or pulse
width/period duration measurement - - - - - - - - x x x x

x = 0 : external clock input
x =1: internal reference clock
(20MHz/5MHz)

20 40 03 50 4 edge evaluation/CLK + DIR or
20MHz/5MHz refeference clock - - - - - - - - x x x x Cnt_Mode=0: x=0: 4-Fl.;x=1:CLK+DIR

Cnt_Mode=1: x=0: 20MHz; x=1: 5MHz
20 40 04 54 DIO1 add-on bit 0...15 - x x x x x x x x x x x x: sets/clears output <bit no>
20 40 04 64 DIO1 add-on bit 16...31 - x x x x x x x x x x x x: sets/clears output <bit no+16>

20 40 04 74 DIO1 add-on set_bit 0...15 - x x x x x x x x x x x x = 0: no effect
x = 1: set output <bit no> *

20 40 04 84 DIO1 add-on set_bit 16...31 - x x x x x x x x x x x x = 0: no effect
x = 1: set output <bit no+16>*

20 40 04 94 DIO1 add-on reset_bit 0...15 - x x x x x x x x x x x x = 0: no effect
x = 1: clear output <bit no> *

20 40 04 A4 DIO1 add-on reset_bit 16...31 - x x x x x x x x x x x x = 0: no effect
x = 1: clear output <bit no+16> *

20 40 04 6C

configure inputs/outputs
Conf_DIO()
bit 0: DIO 00...07; bit 1: DIO 08...15
bit 2: DIO 16...23; bit 3: DIO 24...31

- - - - - - - - x x x x x = 0: configure channels as input
x = 1: configure channels as output

* Function has no effect with inputs

Fig. 29 – DIO1 hardware addresses of the control and data register

DIO1 Add-On
DIO1 Add-On ADwin

32 ADwin-light-16 , manual version 3.5, November 2013

8.2.2 Operating mode impulse/event counting

External square-wave signals at the inputs A/CLK and B/DIR clock the
counters in this mode. With Cnt_Set you either activate the mode for deter-
mining the clock frequency and direction or the four edge evaluation.

The input CLR/LATCH (at high-signal) can be used to

Clearing – clear the counter (CLR)

Latching – latch the counter value into latch A (LATCH).

Clock and direction

Every positive edge of a square-wave signal at the clock input (CLK) is counted
(incremented or decremented) up to a maximum frequency of 20 MHz. The
direction is derived from a high signal (increment) or low signal (decrement) at
the direction input (DIR); this signal can be a fixed voltage or a dynamic signal
(e.g. given by an external logic).

Programming example

Control-Registers

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

CLK

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

DIR

CLR

DIR

4k7

4k7

4k7

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(0)

CNT_INPUTMODE(0)

CNT_ENABLE(1)

CNT_SET(1)

. . .

. . .

EVENT:

CNT_READLATCH(1)

. . .

CNT_LATCH(1)

initialize

disable counter

clear counter

external clock input at the CLK input

set mode clock and direction

set input CLR/LATCH to CLR mode

enable counter

latch current counter value to latch A

read latch A

evaluation in the program

ADwin-light-16 , manual version 3.5, November 2013 33

DIO1 Add-On
DIO1 Add-OnADwin

Four edge evaluation

This mode determines clock and direction of two signals, which are input at A
and B off-phase by 90 degrees (ideally). The count direction is determined by
the temporal sequence of the rising and falling edges of the two input signals.

Please note:

– The counter counts 4 edges in each cycle.

– The maximum count frequency is 20 MHz. Together with the 4 edges
per cycle it will result in a maximum input frequency of 5 MHz (at A or B).

– The time lap between an edge at A and an edge at B must not be shorter
than 50 ns.
Impulse widths or pause durations shorter than 100 ns are not incre-
mented.

– Changing the phase-shift (to ≠90 degrees) will have an effect on the
maximum input frequency because of the minimum time lap of the
edges. If it differs from 90 degrees, the maximum input freqeuency of
5 MHz decreases for instance to 45 degrees at 2.5 MHz.

Programming example

Control-Registers

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

A

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

B

CLR

DIR

4k7

4k7

4k7

DIR

initialize

disable counter

clear counter

external clock input at CLK input

enable mode four edge evaluation

set input CLR/LATCH to CLR mode

enable counter

latch current counter value to latch A

read latch A

evaluation in the program

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(0)

CNT_INPUTMODE(0)

CNT_ENABLE(1)

CNT_SET(0)

. . .

. . .

EVENT:

CNT_READLATCH(1)

. . .

CNT_LATCH(1)

DIO1 Add-On
DIO1 Add-On ADwin

34 ADwin-light-16 , manual version 3.5, November 2013

8.2.3 Operating mode pulse width and period duration measurement

In this operating mode an internal reference clock generator clocks the counter
with a signal frequency of 20 MHz or (after a prescaler) 5 MHz. All counters
have a switch in order to change the signal frequency. The period duration or
pulse width of a square-wave signal at input CLR/LATCH can be measured.

in this mode you have to consider at h igh frequencies that your
Processdelay remains smaller than a signal period, in order to acquire each
cycle.

Period duration measurement

In this mode, a counter value is latched into latch A at every positive edge, and
the previous data are overwritten. The pulse width will be derived from the
counter value difference multiplied by the period duration of the reference
clock.

G

20 or 5 MHz

Control-Registers

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

 LATCH

DIRUp
4k

7

ADwin-light-16 , manual version 3.5, November 2013 35

DIO1 Add-On
DIO1 Add-OnADwin

Programming example

Pulse width and pause duration measurement

The counters have each a latch A for positive and a latch B for negative edges.
Thus, pulse and pause duration can be evaluated separately by calculating the
differences of the latches.

initialize

disable counter

clear counter

mode internal reference clock at internal CLK
input of the counter ...

... with 20 MHz or

... with 5 MHz

set input CLR/LATCH to LATCH mode

enable counter

read latch A

evaluation in the program

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(1)

CNT_INPUTMODE(1)

CNT_ENABLE(1)

CNT_SET(0)

. . .

. . .

CNT_SET(1)

EVENT:

CNT_READLATCH(1)

. . .

G

20 or 5 MHz

Control-Registers

32 bit Latch B (#1& #2)

32 bit Counter (#1& #2)

32 bit Latch A (#1& #2)

CLK

EN
CLR

A
D

w
in

-li
gh

t-1
6

bu
s

Data

Data

Data

 LATCH

DIRUp

4k
7

DIO1 Add-On
DIO1 Add-On ADwin

36 ADwin-light-16 , manual version 3.5, November 2013

Programming example

8.3 CAN-Bus
The add-on board DIO1 has a CAN bus interface for the high-speed CAN pro-
tocol. The connections are available on a 9-pin D-SUB connector (male); the
pin assignment can be found on page 26.

Bus termination

The CAN bus has to be terminated at its physical end (and only there) by a
resistor, that means only at the first and the last CAN node. This is made by set-
ting a corresponding DIP switch on the DIO1 printed circuit board. (see Fig. 25
– Position of the DIP switches on the DIO1 PCB).

If a termination is necessary, set the DIP switch to the top (L16 Rev. B) or
toward the CAN connector (L16 Rev. A).

8.3.1 Functions of the CAN controller

The CAN bus interface is equipped with the Intel® CAN controller AN82527
which works according to the specification CAN 2.0 parts A and B as well as
to ISO 11898. You program the interface with ADbasic instructions, which are
directly accessing the controller’s registers.

Message Messages sent via CAN bus are data telegrams with up to 8 bytes, which are
characterized by so-called identifiers. The CAN controller supports identifiers
with a length of 11 bit and 29 bit. The communication, that means the manage-
ment of bus messages, is effected by 15 message objects.

The registers are used for configuration and status display of the CAN control-
ler. Here the bus speed and interrupt handling, etc. are set (see separate doc-
umentation "82527 - Serial Communications Controller, Architectural
Overview" by Intel®)

initialize

disable counter

clear counter

mode internal reference clock at internal CLK
input of the counter ...

... with 20 MHz or

... with 5 MHz

set input CLR/LATCH to LATCH mode

enable counter

read latch A

read latch B

evaluation in the program

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(1)

CNT_INPUTMODE(1)

CNT_ENABLE(1)

. . .

. . .

CNT_SET(0)

CNT_SET(1)

EVENT:

CNT_READLATCH(1)

CNT_READFLATCH(1)

. . .

ADwin-light-16 , manual version 3.5, November 2013 37

DIO1 Add-On
DIO1 Add-OnADwin

The CAN bus can be set to frequencies of up to 1 MHz and is usually operated
with 1MHz; with low speed CAN the max. frequency is 125kHz. The CAN bus
is galvanically isolated by optocouplers from the ADwin system.

An arriving message can trigger an interrupt which instantaneously generates
an event at the processor. Therefore an immediate processing of messages is
guaranteed.

Message Management

IdentifierThe CAN controller identifies messages by an identifier; these are parameters
in a defined bit length. The parameters 0...211-1 or 0...229-1 result from the bit
length.

Message objectsThe controller stores each message (incoming or outgoing) in one out of 15
message objects. The message objects can either be configured to send or to
receive messages. Message object 15 can only be used to receive messages.
After initializing the CAN controller all message objects are not configured.

Each message object has an identifier, which enables the user to assign a
message to a message object.

Transferring messagesIn ADbasic a message is transferred to a message object using the array
can_msg[], which can receive 8 data bytes plus the amount of data bytes (9
elements). When reading a message from the message object it can also be
transferred to the array can_msg[].

Sending messagesSending a message is made as follows:

– You configure a message object to send and define the identifier of the
object (instruction En_Transmit).

– Save the message in can_msg[].

– Send the message (instruction Transmit). The message in the array
can_msg[] is transferred to the message object. As soon as the bus is
ready, the message is sent (with the identifier of the message object).

Receiving messagesReceiving a message is made as follows:

– You configure a message object to receive and define the identifier of
the object (instruction En_Receive).

– The controller monitors the CAN bus if there are incoming messages
and saves messages with the right identifier in the message object.

– Transfer the message from the message object into the array
can_msg[] (instruction Read_Msg) and read out the corresponding
identifier.

An arriving message overwrites the old data in the message object, which will
be definitely lost. Therefore pay attention to reading out the data faster than
you are receiving them. A data loss is indicated by a flag.

The message object 15 has an additional buffer, so that 2 messages can be
stored there.

Assigning messagesThe allocation of an arriving message to a message object is automatically
controlled by comparing its identifiers. The global mask (CAN registers 6...7 or
6...9) controls this comparison as follows:

– The identifier of the message is bit by bit compared to the identifier of the
message object. If the relevant bits are identical, the message is trans-
ferred to the message object. Not relevant bits are not compared to each
other, that is, the message is transferred to the object (if it depends on
this bit).

– Relevant bits are set in the global mask.

DIO1 Add-On
DIO1 Add-On ADwin

38 ADwin-light-16 , manual version 3.5, November 2013

Global mask With the global mask a message object is used for receiving messages with
different identifiers (ID). The following example shows the assignment of the
message IDs 1...4 to the message object IDs 1...4, when all bits of the global
mask are set, except the two least-significant bits (if you have an 11-bit identi-
fier it is 11111111100b).

In this example the comparison of bit 2 is responsible for the assignment of the
messages, because the bits 3...10 of the compared identifiers are identical (=
0) and the bits 0 and 1 are not compared, because they are set to zero in the
global mask (= not relevant).

Setting the bus frequency

The CAN bus frequency depends on the configuration of the controller.

The initialization with Init_CAN configures the controller automatically to a
CAN bus frequency of 1 MHz. If the CAN bus is to operate with a different fre-
quency, just use the instruction Set_CAN_Baudrate.

With low speed CAN the maximum bus frequency is 125kBit/s.

Bus frequency for
special cases

In some special cases it may be better to select configurations other than those
set with Set_CAN_Baudrate. For this purpose specified registers have to be
set with the instruction Poke. The structure of the register is described in the
controller documentation.

Enable Interrupt / Trigger Event

A message object can be enabled to trigger an interrupt when a message
arrives. The interrupt output of the CAN controller is connected to the event
input of the processor. The processor reacts immediately to incoming mes-
sages without having to control the message input (polling).

You can enable the interrupts of several message objects. Which object has
caused the interrupt can be seen in the interrupt register (5Fh): It contains the
number of the message object that caused the interrupt. If the interrupt flag
(new message flag) is reset in the message object, the interrupt register will be
updated. If there is no interrupt the register is set to 0. If another interrupt
occurs during working with the first interrupt its source will be shown in the
interrupt register. An additional interrupt does not occur in this case.

If message objects be enabled to trigger interrupts, the event inputs (see
page 28) may not be wired at the same time.

Programming

The DIO1 CAN interface is easily programmed by using ADbasic instructions.
The instructions are part of an include file which must be included at the begin-
ning of a program:

#Include ADWL16.INC

Message ID ID of the message object
1

…001b
2

…010b
3

…011b
4

…100b

1 (…001b) x x x 0
2 (…010b) x x x 0
3 (…011b) x x x 0
4 (…100b) 0 0 0 x

x: Message is admitted
0: Message is not admitted

ADwin-light-16 , manual version 3.5, November 2013 39

DIO1 Add-On
DIO1 Add-OnADwin

The instructions for the DIO1 CAN interface are shortly illustrated in the follow-
ing table and more detailed in the ADbasic manual or online help.

Function Instruction
Initializing the CAN controller Init_CAN

Setting and reading of registers Set_CAN_Reg, Get_CAN_Reg
Initializing of message objects En_Receive, En_Transmit
Transmitting and receiving data sets Transmit

Read_Msg, Read_Msg_Con
Enabling of interrupts En_Interrupt

Setting the Baud rate Set_CAN_Baudrate

Fig. 30 – DIO1 Overview of CAN instructions

DIO1 Add-On
DIO1 Add-On ADwin

40 ADwin-light-16 , manual version 3.5, November 2013

8.4 SSI Decoder
An incremental encoder with SSI interface can be connected to the decoder.
The signals are differential and have RS422/485 levels.

The decoder either reads out an individual value (on request) or continously
provides the current value.

The connections of the decoder are on the connectors COUNTER (25-pin,
DSUB), on the pins 8, 9, 21 and 22 (see Fig. 24 – Overview of the
L16-EURO-DIO1 with pin assignments For other L16 variants, the plugs are
named identical.). The pins 7 and 20 provide DGND and +5V.

Setting properties The following properties of the decoders can be set via software:

– Clock rates: With SSI_Set_Clock clock rates of approx. 40kHz up to
1MHz are possible with a pre-scaler.

– Resolution: Can be set with SSI_Set_Bits up to 32 bit.

Example:
Conversion of
Gray code

A conversion from Gray code into binary code is made with the routine below,
which you have programmed in the ADbasic process.

REM PAR_1 = Gray value to be converted
REM PAR_2 = Flag indicating a new Gray value
REM PAR_9 = Result of the Gray-to-binary conversion

DIM m, n AS LONG

EVENT:
IF(PAR_2=1) THEN 'Start of conversion
m=0 'initialize value
PAR_9=0 ' -"-
FOR n=1 TO 32 'Go through all possible 32 bits
 m=(SHIFT_RIGHT(PAR_1,(32-n)) AND 1) XOR m
 PAR_9=(SHIFT_LEFT(m,(32-n))) OR PAR_9
NEXT n

PAR_2=0 'Enable next conversion
ENDIF

Fig. 31 – Listing: Conversion of Gray code into binary code

Programming The functionality of the decoders is easily programmed with ADbasic instruc-
tions:

The instructions are in the include file <ADWL16.INC>. More information can
be found in the ADbasic manual and the online help.

Range Instructions
Initialization SSI_INIT

Receive data SSI_READ

Set decoder resolution SSI_SET_BITS

Set decoder clock rate SSI_SET_CLOCK

Start reading encoder data SSI_START

Return reading status SSI_STATUS

ADwin-light-16 , manual version 3.5, November 2013 41

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-OnADwin

9 DIO2 / DIO3 Add-On
With the DIO2 add-on you are additionally provided with:

– 32 digital inputs/outputs, programmable in groups of 8; page 43.

– 2 counters, page 44: 32 bit up/down counters for impulse, period dura-
tion and duty cycle measurements as well as a four edge evaluation for
connection of incremental encoders.
Counter 1 has TTL inputs (single-ended), counter 2 has differential
inputs.

The counters of the basic version are replaced by the DIO2 counters.

– 1 SSI decoder (page 51)

The SSI decoder is connected to an incremental encoder with SSI inter-
face. The inputs are available on the "Counter" socket, the signals are
differential and have RS422/485 levels.

The block diagram shows the basic functions of an L16 system with the addi-
tional functions of the DIO2 add-on (as USB version).

The DIO3 add-on contains 32 digital inputs/outputs only (see page 43). Prop-
erties and function of the inputs/outputs are identical to the I/Os of the DIO2
add-on.

The pin assignment at the connection "ADwin I/O-CONNECTOR" is similar to
the basic version, except one difference: Pin 13 - in the basic version with sin-

Fig. 32 – Block diagram of L16-DIO2 (with USB interface)

8 dig. I/O-lines (TTL / 5V-CMOS)

8 dig. I/O-lines (TTL / 5V-CMOS)

6 digital inputs (TTL / 5V-CMOS) 6 digital outputs (TTL / 5V-CMOS)

16bit / 10µs

A
D

MUX
IN 1
IN 3
IN 5
IN 7
IN 9

IN 11
IN 13
IN 15

D
A

 SHARC™
ADSP 21062

Analog Devices
8 MB external SDRAM

D
A

16bit

16bit

OUT 1

OUT 2

EVENT

InAmp
+

-

OP
+

-

OP
+

-

DIGOUT5:0

A/CLK
B/DIR

32 bit up-/down-counter #1
modes: a) impuls/event counter

b) period width measurement
c) PWM analysis

DIGIN5:0

to PC
USB-

controller USB

CLR/LATCH

32 bit up-/down-counter #2
modes: a) impuls/event counter

b) period width measurement
c) PWM analysis

A/CLK
B/DIR

CLR/LATCH

DIO07:00

DIO15:08

DIO23:16

DIO31:24

8 dig. I/O-lines (TTL / 5V-CMOS)

8 dig. I/O-lines (TTL / 5V-CMOS)

ad
dr

es
s

bu
s

&
 d

at
a

bu
s

SSI
decoder

SSI, DATA

SSI, CLK

LS bus decoder
(since rev. B2)

LS Low

LS High

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-On ADwin

42 ADwin-light-16 , manual version 3.5, November 2013

gle function - is now used alternatively as digital input Digin-03 or as counter
input CLR for counter 1.

The technical data of the DIO2 add-on are shown in the Annex.

Fig. 33 – Overview of the L16-EURO-DIO2 with pin assignments

AD
wi

n
 I/O

-C
ON

NE
CT

OR

ADwin-L16 + EXPANSION-BOARD

USB

DI
GI

TA
L

I/O

CO
UN

TE
R

LS
-B

US

DGND
+5V (max. 100mA)
RESERVED
DIO-BIT 23
DIO-BIT 22
DIO-BIT 21
DIO-BIT 20
DIO-BIT 19
DIO-BIT 18
DIO-BIT 17
DIO-BIT 16
DIO-BIT 07
DIO-BIT 06
DIO-BIT 05
DIO-BIT 04
DIO-BIT 03
DIO-BIT 02
DIO-BIT 01
DIO-BIT 00

DGND
+5V (max. 100mA)

DIO-BIT 31
DIO-BIT 30
DIO-BIT 29
DIO-BIT 28
DIO-BIT 27
DIO-BIT 26
DIO-BIT 25
DIO-BIT 24
DIO-BIT 15
DIO-BIT 14
DIO-BIT 13
DIO-BIT 12
DIO-BIT 11
DIO-BIT 10
DIO-BIT 09
DIO-BIT 08

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

SSI, DATA (-)
SSI, CLK (-)
DGND

CNTR 2: /A, /CLK
CNTR 2: /B, /DIR
CNTR 2: /CLR, /LATCH

SSI, DATA (+)
SSI, CLK (+)

+5 V (max. 100 mA)

CNTR 2: A, CLK
CNTR 2: B, DIR

CNTR 2: CLR, LATCH

RESERVEDRESERVED
25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

RESERVED
RESERVED

+5V (max. 100mA)
RESERVED
DGND
DIGIN-05 / CNTR 1: B
DIGIN-04 / CNTR 1: A
DIGIN-03 / CNTR 1: CLR
DIGIN-02
DIGIN-01
DIGIN-00
ADC 11 INPUT (+)
ADC 09 INPUT (+)
ADC 07 INPUT (+)
ADC 05 INPUT (+)
ADC 03 INPUT (+)
ADC 01 INPUT (+)
ADC 15 INPUT (+)
ADC 13 INPUT (+)
DAC 2 OUTPUT
DAC 1 OUTPUT

EVENT INPUT
DIGOUT-05
DIGOUT-04
DIGOUT-03
DIGOUT-02
DIGOUT-01
DIGOUT-00

ADC 11 INPUT (-)
ADC 09 INPUT (-)
ADC 07 INPUT (-)
ADC 05 INPUT (-)
ADC 03 INPUT (-)
ADC 01 INPUT (-)
ADC 15 INPUT (-)
ADC 13 INPUT (-)

AGND DAC

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

RESERVED

RESERVEDRESERVED

5

4

3

2

1

9

8

7

6

SIGNAL GND
RESERVED
SIGNAL HIGH

RESERVED
SIGNAL LOW

ADwin-light-16 , manual version 3.5, November 2013 43

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-OnADwin

9.1 Digital Inputs and Outputs
In addition to the digital inputs/outputs of the basic version (Digin, Digout,
EVENT), you have 32 digital inputs or outputs (abbrev. DIO) on the 37-pin
D-SUB socket "Digital I/O". They are programmable in groups of 8 each as
inputs or outputs.

The digital inputs are TTL compatible and are not protected against overvolt-
age.

Power-up configurationAfter power-up all connections are configured as inputs; this corresponds to
the instruction Conf_DIO_E(0).

Conf_DIO_E(n) is the instruction to program the 32 DIO lines in 4 groups
with 8 lines each as input or output (see chapter 13 or ADbasic online help).

The following table shows the 16 possible configurations of the instruction. The
last row shows the instructions availabel for the different DIO groups.

More information about programming of time-critical tasks can be found in
chapter 5.5 on page 17.

Conf_DIO_E(n) DIO 31 ... DIO 24 DIO 23 ... DIO 16 DIO 15 ... DIO 08 DIO 07... DIO 00

0 IN IN IN IN

1 IN IN IN OUT

2 IN IN OUT IN

3 IN IN OUT OUT

4 IN OUT IN IN

5 IN OUT IN OUT

6 IN OUT OUT IN

7 IN OUT OUT OUT

8 OUT IN IN IN

9 OUT IN IN OUT

10 OUT IN OUT IN

11 OUT IN OUT OUT

12 OUT OUT IN IN

13 OUT OUT IN OUT

14 OUT OUT OUT IN

15 OUT OUT OUT OUT

 ADbasic instruc-
tions to use:

Digin_Word2_E
Digout_Word2_E
Digout_Set2_E
Digout_Reset2_E

Digin_Word1_E
Digout_Word1_E
Digout_Set1_E
Digout_Reset1_E

Digin_Long_E, Digout_Long_E

Fig. 34 – Configurations with Conf_DIO_E

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-On ADwin

44 ADwin-light-16 , manual version 3.5, November 2013

9.2 Counters
Counter The add-on DIO2 provides two 32-bit counters, which you can configure and

read out individually or all together. You can use TTL signals (single-ended)
with counter 1 or differential signals with counter 2.
The counters replace the incremental counters of the basic version.

Latch The counters can be internally or externally clocked and are read out via
accompanying latches. All counters have a latch A as well as a latch B (the fig-
ure shows the design of a single counter).

The counter values can be cleared or transferred into a latch by using program-
ming instructions or (at special configurations) when there is an external signal
at CLR/LATCH.

There are the following operating modes: event counting (external clock) and
pulse width measurement (internal clock), see also chapter 9.2.2 / 9.2.3:

External clocking 5. Event counting: Incrementing/decrementing of the counter is caused
by external square-wave signals at the inputs A/CLK and B/DIR. A sig-
nal at CLR/LATCH either sets the counter to zero (CLR) or has the
counter value written into the latch (LATCH).

There are the modes:
• Clock and direction: Every positive edge at CLK increments or

drecrements the counter value by one. The signal at DIR
determines the counting direction (0 = down, 1 = up).

• Four edge evaluation: Every edge of the signals (off-phase by
90 degrees) at A/CLK and B/DIR causes the counter to
increment/decrement. The counting direction is determined by
the sequence of the rising/falling edges of these signals. This
mode is particularly used for incremental encoders.

Internal clock 6. Pulse width measurement: Incrementing/decrementing of the counter
is caused by an internal reference clock with a signal frequency of
20 MHz (optionally 5 MHz after scaler). The square-wave signal at
CLR/LATCH is evaluated: With every positive edge of the input signal
the counter value is written to latch A, with a negative edge to latch B.

You can calculate:
• the period duration of the input signal at CLR/LATCH from the

values in latch A and latch B.
• the impulse width and pause time from the values in latch A and

latch B.

Fig. 35 – Block diagram of DIO2 counter
NOTE: Only Counter #1 is shown for clarity of the schematic. The 20 MHz clock signal is distributed to second divider/counter.

G

20 MHz

Control-Registers

32 bit Latch B (#1, #2)

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

A / CLK

A
D

w
in

-li
gh

t-1
6

bu
s

Data

Data

Data

B / DIR

CLR /
 LATCH

DIRDIR

CNT_INPUTMODE

CNT_SET
(CNT_MODE)

CNT_CLEAR
CNT_LATCH

CNT_SET
(CNT_MODE)

CNT_MODE

Up

4-edge-
evaluation

ref.-CLK

4k
7

4k
7

4k
7

to fref-switch of
second counter

Divider
÷ 4

ADwin-light-16 , manual version 3.5, November 2013 45

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-OnADwin

9.2.1 Programming

The DIO2 counters are easily programmed by using ADbasic instructions. The
instructions are part of an include file which must be included at the beginning
of a program:

#INCLUDE ADWL16.INC

The instructions for the DIO2 counters are shortly illustrated in the following
table and more detailed in the ADbasic manual or online help.

With these instructions of the table matrix you will be able to configure every
counter individually or both counters together.

Please initialize the counters in the following order:

1. disable specified counter (Cnt_Enable)

The instruction Cnt_Enable always accesses all counters. Even if you
want to change the status (disabled/enabled) of only one counter, you
also have to configure the counters whose status shall remain un-
changed.

2. set operating mode (Cnt_Mode, Cnt_Set, Cnt_InputMode)

Please take into account that the instruction Cnt_Set is dependent on
the instruction Cnt_Mode.

3. clear counter (Cnt_Clear)

4. enable counter (Cnt_Enable)

Counter no 2 1 Comment
Bit 1 0
Cnt_Clear() 0 0 no effect

1 1 clear counter*
Cnt_Enable() 0 0 disable counter

1 1 enable counter (pay attention to running counters)
Cnt_InputMode() 0 0 set CLR/LATCH input to CLR mode

1 1 set CLR/LATCH input to LATCH mode
Cnt_Latch() 0 0 no effect

1 1 copy counter value to latch register A*
Cnt_Mode() 0 0 external clock input

1 1 internal reference clock (20MHz / 5MHz)
Cnt_Set() 0 0 Cnt_Mode bit = 0 : 4 edge evaluation (A & B)

Cnt_Mode bit = 1 : internal reference clock of 20MHz
1 1 Cnt_Mode bit = 0 : clock and direction inputs (CLK & DIR)

Cnt_Mode bit = 1 : internal reference clock of 5MHz
Cnt_ClearEnable() 0 0 disable CLR input

1 1 enable CLR input
Cnt_GetStatus(#) ** read status register (for the meaning of the bits see ADbasic manual

or online help)
Cnt_Read(#) ** copy counter value to latch A and read it
Cnt_ReadLatch(#) ** read out latch A (triggered by positive edge)
Cnt_ReadFLatch(#) ** read out latch B (triggered by a negative edge)
* The bits are reset after the function has been executed. All other functions are reset by the opposing function.
** # = counter no. 1 or 2

Fig. 36 – DIO2 counter instructions - short reference

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-On ADwin

46 ADwin-light-16 , manual version 3.5, November 2013

Evaluate the counter value only with LONG variables. ADbasic then keeps
internally the read bit patterns unmodified and considers automatically the
transition from the positive to the negative numerical range (see also page 15).
Then you get:

The count direction (up or down) can reliably be derived from the

sign of the difference: [new counter value] – [old counter value]

and not from the comparison (< >) of the counter value.

Calculate the difference only with variables of type LONG.

A task can be very quickly processed if you access the control and data regis-
ters directly via Peek and Poke (see chapter 5.5 as well as ADbasic manual
/ online help). The hardware addresses of the DIO2 add-on are illustrated in
the following table (see also Fig. 36 – DIO2 counter instructions - short refer-
ence).

Address Function Bit Comment
[hex] 31:16 15:10 9 8 7 6 5 4 3 2 1 0
20 40 02 04 contents of latch A, counter #1 x x x x x x x x x x x x x : contents of the latch
20 40 02 08 contents of latch B, counter #1 x x x x x x x x x x x x x : contents of the latch
20 40 02 14 contents of latch A, counter #2 x x x x x x x x x x x x x : contents of the latch
20 40 02 18 contents of latch B, counter #2 x x x x x x x x x x x x x : contents of the latch

20 40 03 00 enable/disable counter
Cnt_Enable() - - - - - - - - x x x x x = 0 : disable counter

x = 1 : enable counter

20 40 03 10 clear counter Cnt_Clear() - - - - - - - - x x x x x = 0 : no effect
x = 1 : clear counter

20 40 03 20 latch counter Cnt_Latch() - - - - - - - - x x x x x = 0 : no effect
x = 1 : latch counter

20 40 03 30 input:: CLR or LATCH - - - - - - - - x x x x x = 0 : CLR input
x = 1 : LATCH input

20 40 03 40 impulse/event counter or pulse
width/period duration measurement - - - - - - - - x x x x

x = 0 : external clock input
x =1: internal reference clock
(20MHz/5MHz)

20 40 03 50 4 edge evaluation/CLK + DIR or
20MHz/5MHz refeference clock - - - - - - - - x x x x Cnt_Mode=0: x=0: 4-Fl.;x=1:CLK+DIR

Cnt_Mode=1: x=0: 20MHz; x=1: 5MHz
20 40 04 54 DIO2 add-on bit 0...15 - x x x x x x x x x x x x: sets/clears output <bit no>
20 40 04 64 DIO2 add-on bit 16...31 - x x x x x x x x x x x x: sets/clears output <bit no+16>

20 40 04 74 DIO2 add-on set_bit 0...15 - x x x x x x x x x x x x = 0: no effect
x = 1: set output <bit no> *

20 40 04 84 DIO2 add-on set_bit 16...31 - x x x x x x x x x x x x = 0: no effect
x = 1: set output <bit no+16>*

20 40 04 94 DIO2 add-on reset_bit 0...15 - x x x x x x x x x x x x = 0: no effect
x = 1: clear output <bit no> *

20 40 04 A4 DIO2 add-on reset_bit 16...31 - x x x x x x x x x x x x = 0: no effect
x = 1: clear output <bit no+16> *

20 40 04 6C
configure inputs/outputs Conf_DIO()
bit 0: DIO 00...07; bit 1: DIO 08...15
bit 2: DIO 16...23; bit 3: DIO 24...31

- - - - - - - - x x x x x = 0: configure channels as input
x = 1: configure channels as output

* Function has no effect with inputs

Fig. 37 – DIO2 hardware addresses of the control and data register

ADwin-light-16 , manual version 3.5, November 2013 47

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-OnADwin

9.2.2 Operating mode impulse/event counting

External square-wave signals at the inputs A/CLK and B/DIR clock the
counters in this mode. With Cnt_Set you either activate the mode for deter-
mining the clock frequency and direction or the four edge evaluation.

The input CLR/LATCH (at high-signal) can be used to

Clearing– clear the counter (CLR)

Latching– latch the counter value into latch A (LATCH).

Clock and direction

Every positive edge of a square-wave signal at the clock input (CLK) is counted
(incremented or decremented) up to a maximum frequency of 20 MHz. The
direction is derived from a high signal (increment) or low signal (decrement) at
the direction input (DIR); this signal can be a fixed voltage or a dynamic signal
(e.g. given by an external logic).

Programming example

Control-Registers

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

CLK

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

DIR

CLR

DIR

4k7

4k7

4k7

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(0)

CNT_INPUTMODE(0)

CNT_ENABLE(1)

CNT_SET(1)

. . .

. . .

EVENT:

CNT_READLATCH(1)

. . .

CNT_LATCH(1)

initialize

disable counter

clear counter

external clock input at the CLK input

set mode clock and direction

set input CLR/LATCH to CLR mode

enable counter

latch current counter value to latch A

read latch A

evaluation in the program

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-On ADwin

48 ADwin-light-16 , manual version 3.5, November 2013

Four edge evaluation

This mode determines clock and direction of two signals, which are input at A
and B off-phase by 90 degrees (ideally). The count direction is determined by
the temporal sequence of the rising and falling edges of the two input signals.

Please note:

– The counter counts 4 edges in each cycle.

– The maximum count frequency is 20 MHz. Together with the 4 edges
per cycle it will result in a maximum input frequency of 5 MHz (at A or B).

– The time lap between an edge at A and an edge at B must not be shorter
than 50 ns.
Impulse widths or pause durations shorter than 100 ns are not incre-
mented.

– Changing the phase-shift (to ≠90 degrees) will have an effect on the
maximum input frequency because of the minimum time lap of the
edges. If it differs from 90 degrees, the maximum input freqeuency of
5 MHz decreases for instance to 45 degrees at 2.5 MHz.

Programming example

Control-Registers

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

A

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

B

CLR

DIR

4k7

4k7

4k7

DIR

initialize

disable counter

clear counter

external clock input at CLK input

enable mode four edge evaluation

set input CLR/LATCH to CLR mode

enable counter

latch current counter value to latch A

read latch A

evaluation in the program

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(0)

CNT_INPUTMODE(0)

CNT_ENABLE(1)

CNT_SET(0)

. . .

. . .

EVENT:

CNT_READLATCH(1)

. . .

CNT_LATCH(1)

ADwin-light-16 , manual version 3.5, November 2013 49

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-OnADwin

9.2.3 Operating mode pulse width and period duration measurement

In this operating mode an internal reference clock generator clocks the counter
with a signal frequency of 20 MHz or (after a prescaler) 5 MHz. All counters
have a switch in order to change the signal frequency. The period duration or
pulse width of a square-wave signal at input CLR/LATCH can be measured.

in this mode you have to consider at high frequencies that your
Processdelay remains smaller than a signal period, in order to acquire each
cycle.

Period duration measurement

In this mode, a counter value is latched into latch A at every positive edge, and
the previous data are overwritten. The pulse width will be derived from the
counter value difference multiplied by the period duration of the reference
clock.

Programming example

G

20 or 5 MHz

Control-Registers

32 bit Counter (#1, #2)

32 bit Latch A (#1, #2)

CLK

EN
CLR

A
D

w
in

-li
gh

t-1
6

bu
sData

Data

 LATCH

DIRUp

4k
7

initialize

disable counter

clear counter

mode internal reference clock at internal CLK input

... with 20 MHz or

... with 5 MHz

set input CLR/LATCH to LATCH mode

enable counter

read latch A

evaluation in the program

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(1)

CNT_INPUTMODE(1)

CNT_ENABLE(1)

CNT_SET(0)

. . .

. . .

CNT_SET(1)

EVENT:

CNT_READLATCH(1)

. . .

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-On ADwin

50 ADwin-light-16 , manual version 3.5, November 2013

Pulse width and pause duration measurement

The counters have each a latch A for positive and a latch B for negative edges.
Thus, pulse and pause duration can be evaluated separately by calculating the
differences of the latches.

Programming example

G

20 or 5 MHz

Control-Registers

32 bit Latch B (#1& #2)

32 bit Counter (#1& #2)

32 bit Latch A (#1& #2)

CLK

EN
CLR

A
D

w
in

-li
gh

t-1
6

bu
s

Data

Data

Data

 LATCH

DIRUp

4k
7

initialize

disable counter

clear counter

mode internal reference clock at internal CLK input

... with 20 MHz or

... with 5 MHz

set input CLR/LATCH to LATCH mode

enable counter

read latch A

read latch B

evaluation in the program

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(1)

CNT_INPUTMODE(1)

CNT_ENABLE(1)

. . .

. . .

CNT_SET(0)

CNT_SET(1)

EVENT:

CNT_READLATCH(1)

CNT_READFLATCH(1)

. . .

ADwin-light-16 , manual version 3.5, November 2013 51

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-OnADwin

9.3 SSI Decoder
An incremental encoder with SSI interface can be connected to the decoder.
The signals are differential and have RS422/485 levels.

The decoder either reads out an individual value (on request) or continously
provides the current value.

The connections of the decoder are on the connectors COUNTER (25-pin,
DSUB), on the pins 8, 9, 21 and 22 (see Fig. 33 – Overview of the
L16-EURO-DIO2 with pin assignments). The pins 7 and 20 provide DGND and
+5V.

Setting propertiesThe following properties of the decoders can be set via software:

– Clock rates: With SSI_Set_Clock clock rates of approx. 40kHz up to
1MHz are possible with a pre-scaler.

– Resolution: Can be set with SSI_Set_Bits up to 32 bit.

Example:
Conversion of
Gray code

A conversion from Gray code into binary code is made with the routine below,
which you have programmed in the ADbasic process.

REM PAR_1 = Gray value to be converted
REM PAR_2 = Flag indicating a new Gray value
REM PAR_9 = Result of the Gray-to-binary conversion

DIM m, n AS LONG

EVENT:
IF(PAR_2=1) THEN 'Start of conversion
m=0 'initialize value
PAR_9=0 ' -"-
FOR n=1 TO 32 'Go through all possible 32 bits
 m=(SHIFT_RIGHT(PAR_1,(32-n)) AND 1) XOR m
 PAR_9=(SHIFT_LEFT(m,(32-n))) OR PAR_9
NEXT n

PAR_2=0 'Enable next conversion
ENDIF

Fig. 38 – Listing: Conversion of Gray code into binary code

ProgrammingThe functionality of the decoders is easily programmed with ADbasic instruc-
tions:

The instructions are in the include file <ADWL16.INC>. More information can
be found in the ADbasic manual and the online help.

Range Instructions
Initialization SSI_INIT
Receiving of data SSI_READ
Set decoder resolution SSI_Set_BITS
Set decoder clock rate SSI_Set_CLOCK
Start reading encoder data SSI_START
Return reading status SSI_STATUS

DIO2 / DIO3 Add-On
DIO2 / DIO3 Add-On ADwin

52 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 53

PWM1 Add-On
PWM1 Add-OnADwin

10PWM1 Add-On
With the PWM1 add-on you are additionally provided with:

– 1 PWM output, page 54.

One digital output of the basic version is replaced by the PWM1 output.

– 1 SPI interface with SPI master functionality, page 55.

The PWM1 add-on can be combined with the Light-16 basic variant and any
add-on (CO1, DIO1, DIO2, DIO3).

pin assignmentsThe PWM1 add-on is a retrofitable add-on which uses given pins. The function
of the double-use pins is switched via software between original function and
new function.

With the Light-16 basic variant (without add-ons) and the add-ons CO1 and
DIO1 only the pins of the DSub connector ADwin I/O-Connector can be
switched.

Alternatively, with the add-ons DIO2 and DIO3 pins of the DSub connector
Digital I/O can be also switched.

The switchable pins in the pin assignments (below) are named: PWM1, SPI
CLK, SPI MOSI and SPI MISO.

Fig. 39 – Pin assignments

DSub ADwin I/O-Connector DSub connector Digital I/O
(only with DIO2 and DIO3)

...

...

...

...

...

...
DIGIN-02 / SPI MISO
...
...
...
...
...
...
...
...
...
...
...
...

...

...

...
PWM Out / DIGOUT-05
SPI CLK / DIGOUT-04

SPI MOSI / DIGOUT-03
...
...
...
...
...
...
...
...
...
...
...
...

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

...

...

...
DIO-Bit 23 / SPI MISO
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

...

...
SPI CLK / DIO-Bit 31

SPI MOSI / DIO-Bit 30
...
...
...
...
...
...
...
...
...
...
...
...
...
...

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

PWM1 Add-On
PWM1 Add-On ADwin

54 ADwin-light-16 , manual version 3.5, November 2013

10.1 PWM Output
The add-on PWM1 provides one PWM output. The PWM output enables to
output a pulse-width-modulated signals with selectable duty cycle. The output
is clocked with 40MHz.

The PWM output is provided at pin 34 on the 37-pole DSub socket ADwin
I/O-Connector (see above). Pin 34 has double-use and may be run as digital
output DIGOUT-05 or as PWM output PWM Out. You set the pin function via
software using the instruction PWM_Activate.

After power-up pin 34 is configured as digital output DIGOUT-05.

Programming The functionality of the PWM output is easily programmed with ADbasic
instructions; description see chapter 13.7, starting from page 135:

The instructions are provided in the include file ADWL16.inc. More informa-
tion can be found in the online help.

Function Instructions
Switch pin 34 to PWM output PWM_Activate

Initialize PWM output

Select operating mode

PWM_Init
PWM_Reset
PWM_Standby_Value

Start PWM output PWM_Enable

Set PWM mode PWM_Write_Latch

Read PWM mode and status PWM_Get_Status
PWM_Latch

ADwin-light-16 , manual version 3.5, November 2013 55

PWM1 Add-On
PWM1 Add-OnADwin

10.2 SPI Interface
The add-on PWM1 provides an SPI interface with SPI master functionality. The
SPI master runs with a bus frequency of up to 5MHz.

The SPI interface uses 3 pins of the DSub connector ADwin I/O-Connector
oder der Sub-D-Buchse Digital I/O for SPI signals (see table). These pins have
double-use and may be run as digital channels or as SPI signals. You set the
pin function via software using the instruction SPI_Enable. The pin assignment
is shown on page 53.

Please note: If you switch pins of the DSub connector Digital I/O for SPI
signals, the pins DIO-24…DIO-31 are automatically configured as outputs and
the pins DIO16…DIO-23 as inputs. If later you reset the pins as digital chan-
nels the previous configuration is valid again.

In addition, you require a separate Slave Select line for each SPI slave to
address them. If you use the remaining digital outputs, you set the selected
TTL level with the appropriate instructions for digital outputs, e. g.
Digout_Clear or Digout_Set.

SPI protocol

In theory, an unlimited number of members can be connected to the SPI bus
while there has to be exactly one SPI master. The master creates the clock sig-
nal on the SPI CLK line and selects via a Slave Select (SS) line the slave
he will communicate with. If the master pulls SS to the appropriate TTL level,
the slave is activated, listens to SPI MOSI and sends its data to SPI MISO with
the clock rate of SPI CLK. Thus, a number of bits are transferred from master
to slave and the same number of bits from slave to master.

A protocol for data transfer has not been fixed, but practically four modes have
been established. The modes are are selected using the parameters clock
polarity (CPOL) and clock phase (CPHA):

– Clock polarity: At CPOL=0 the base value of the clock is low, at CPOL=1
the base value is high.

– Clock Phase: CPHA selects at which edge data is to be sampled. That
is, CPHA=0 means sample on the leading (first) clock edge, while
CPHA=1 means sample on the trailing (second) clock edge.

– Modes 0…3: Thus with CPOL=0 and CPHA=0 data is captured on the
clock's rising edge. With CPHA=1 data is captured on the (second) falling

SPI Signal ADwin I/O-Connec-
tor

Digital I/O

pin replaces pin replaces
SPI CLK: clock 33 DIGOUT-0

4
35 DIO-31

SPI MOSI : Master out ,
slave in

32 DIGOUT-0
3

34 DIO-30

SPI MISO: Master in, slave
out

13 DIGIN-02 16 DIO-23

Slave Select (SS) e.g. digital output

Mode CPOL CPHA

0 0 0
1 0 1
2 1 0
3 1 1

PWM1 Add-On
PWM1 Add-On ADwin

56 ADwin-light-16 , manual version 3.5, November 2013

edge. With CPOL=1 all is reversed, so with CPHA=0 data is captured on
the falling edge, with CPHA=1 on the rising edge

Please note that with CPHA=0 the slave sends its data to SPI MISO while SS
is activated, so the master can capture it on the first edge. With CPHA=1 the
slave sends its data to SPI MISO on the first edge, so the master can capture
it on the second edge.

With each clock a bit is transferred. A common data byte requires 8 clock peri-
ods to be completely transferred. You can also transfer several bytes in a row
where there is no definition whether a short SS deselect signal is required after
each byte. The data transfer is finished if the SS deselect signal is permanent.

Programmierung The functionality of the SPI interface is easily programmed by using ADbasic
instructions:

The instructions are provided in the include file ADWL16.inc. More informa-
tion can be found in chapter 13.8 on page 146.

Function Instructions
Enable SPI slave for data transfer (slave
select)

for example
Digout_Clear, Digout_Set

Switch pins for SPI signals SPI_Enable

Configure SPI interface SPI_Config

Write and read data SPI_Set_MOSI ,
SPI_Get_MISO

Start data transfer SPI_Start

Wait for end of data transfer SPI_Wait

Return status of data transfer SPI_Status

Read TTL level of the data line SPI_Static_MISO

ADwin-light-16 , manual version 3.5, November 2013 57

ADwin-light-16-Boot
ADwin-light-16-BootADwin

11 ADwin-light-16-Boot
This option is only available in conjunction with the Ethernet interface, that
means with the L16-EXT-ENET or the L16-EURO-ENET.

After power-up ADwin-light-16-Boot automatically starts an application
which has been programmed before. Thus after initializing the application an
operation without PC is possible.

ADwin-light-16-Boot executes the following steps after power-up:

– Loading the operating system

– Loading the processes generated with the ADbasic compiler (max. 10)

– Automatic starting of the process no 10. Here you have also to program
the start of all other processes

If you do not wish to work with the bootloader option:

– Boot the system after power-up and the programmed processes are dis-
abled

– After switching off and powering up anew, the bootloader option is
enabled again

By programming the Flash-EEPROMs without processes the system will only
be booted after restart with the file <ADwin9.btl>. A process will not be exe-
cuted.

With the installation of the ADwin-Developer software from the ADwin-CD-
ROM, the program for the bootloader option (ADethflash) is automatically cop-
ied. The version of the CD-ROM should be 3.00.2735 or higher.

Use the program ADethflash for an ADwin system with an Ethernet interface.

At standard installation you will find the program in the directory
<C:\ADwin\Tools\Ethernet Interface\...>.

Notes for the bootloader with Ethernet interface can be found in the documen-
tation "ADwin Driver Installation".

Together with with an Ethernet-Interface and bootloader you can save and
read up to 2,000 Long or Float values with 32 bit via ADbasic process in the
built-in Flash-EEPROM memory. You can find a more detailed description in
the program <ADethflash.exe>, if you click on the button "Info about
eeprom support".

Accessories
Accessories ADwin

58 ADwin-light-16 , manual version 3.5, November 2013

12Accessories
The following accessories are available for the ADwin-light-16 system:

– ADbasic: The real-time development environment for prgramming all of
the ADwin systems.

ADbasic is required to develop processes for ADwin systems, which are
loaded and controlled from a development environment (e.g. C#, Visual
Basic, Matlab and others).

– ADwin-light-16-pow: external 12V power supply unit.

The power supply unit provides 12 Volt on the secondary side at a max-
imum continuous load of 2 Ampere. The power supply is rated for the
highest load and maximum expansions.

– Various lengths of power supply and USB or Ethernet cables.

Please pay attention to a sufficient shielding of the USB and Ethernet
cable, in order to avoid interferences in the data lines. Interferences
have to be conducted before the chassis via ground (see also
chapter 3).

– Cable connector for an external power supply

The cable connector be used if an external power supply is used.

– installation kit for enclosures

ADwin-light-16 , manual version 3.5, November 2013 59

Software
SoftwareADwin

13Software
You are programming the ADwin-light-16 - all expansions included - with sim-
ple ADbasic instructions.

All instructions to access inputs, outputs and interfaces are described on the
following pages (or in the online help):

– Analog Inputs and Outputs: page 63

– Digital Inputs and Outputs: page 77

– Counter: page 95

– CAN interface: page 111

– SSI interface: page 127

– PWM Outputs: page 135

– SPI Interface: page 146

13.1 Example Program

13.1.1 CAN: Cyclic Read and Send of Messages

This programs describes the initialization of the CAN controller in the section
INIT: and the cyclic read and send of messages in the section EVENT:

REM The program initializes the CAN controller,
REM configures one message object as sender
REM and one as receiver. The program exchanges all 10 ms data
REM between CAN controller and transputer.

#include adwl16.inc

DIM result AS LONG

INIT:
INIT_CAN() 'Initialize the CAN controller

'Set Baud rate to 125 kBit/s
SET_CAN_BAUDRATE(125000)

EN_RECEIVE(2,385,0) 'configure message object 2 for reading
'with 11 bit identifier 385

EN_TRANSMIT(3,1,0) 'configure message object 3 for writing
'with 11 bit ident. 1

EVENT:
REM read 1 data set and write 1 data set

result = READ_MSG(2)'read data
'If there are new data, they are written into the field
'CAN_MSG.

can_msg[1]=1 'data, which are to be sent,
can_msg[2]=2 'are written into the field
can_msg[3]=3 'CAN_MSG. You are getting the
can_msg[4]=4 'data from this field to be
can_msg[5]=5 'sent later
can_msg[6]=6
can_msg[7]=7
can_msg[8]=8
can_msg[9]=8 '8 data bytes

 TRANSMIT(3) 'send message in message object 3

Example Program
Software ADwin

60 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 61

Example Program
SoftwareADwin

13.1.2 CAN: Interrupt-Controlled Reading

The following program shows the initialization of the CAN controller and the
interrupt-controlled reading of new messages:

REM The program initializes the CAN controller and
REM configures a message object as receiver.
REM The program reads interrupt-controlled messages
REM as soon as a new message arrives.

#INCLUDE adwl16.inc

DIM result,status,object AS LONG

INIT:
INIT_CAN() 'Initialize the CAN controller

'set Baud rate to 125 kBit/s
SET_CAN_BAUDRATE(125000)

EN_RECEIVE(1,385,0) 'message object 1 is configured
'for reading. Only messages with
'11 bit identifier 385 are saved.

status = GET_CAN_REG(1) 'read status
EN_INTERRUPT(1) 'When a message arrives in

'message object 1 an interrupt
'is triggered.

EVENT:
object = GET_CAN_REG(5Fh) 'read interrupt register

IF (objekt = 2) THEN 'Get the number of the message
objekt = 15 'object, where the new message

ELSE 'can be found
object = object - 2

ENDIF

result = READ_MSG(object) 'read out new data

REM The data are available in the field CAN_MSG.

Example Program
Software ADwin

62 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 63

Analog Inputs and OutputsADwin
13.2 Analog Inputs and Outputs
This section describes the following instructions:

– DAC (page 64)

– ADC (page 65)

– L16_Mode (page 67)

– ReadADC (page 68)

– Seq_Init (page 69)

– Seq_Read (page 72)

– Set_Mux (page 73)

– Start_Conv (page 74)

– Wait_EOC (page 75)

Analog Inputs and Outputs
DAC ADwin

64 ADwin-light-16 , manual version 3.5, November 2013

DAC DAC outputs a defined voltage on a specified analog output.

Syntax
DAC(dac_no,value)

Parameters

Notes
If you specify value beyond the permissible value range, it will auto-
matically be set to the system-specific minimum or maximum value.

See also
ADC

Valid for
L16

Example
REM Digital proportional controller
Dim set_to, gain, diff, Out As Long 'Declaration

Event:
set_to = Par_1 'Setpoint
gain = Par_2 'Dimension
diff = set_to - ADC(1)'Calculate control deviation
Out = diff * gain 'Calculate actuating value
DAC(1, Out) 'Output of the actuating value

dac_no Number of analog output (1…2). LONG

value Value in digits, which defines the voltage to be out-
put (0…65535).

LONG

ADwin-light-16 , manual version 3.5, November 2013 65

Analog Inputs and Outputs
ADCADwin

ADCADC measures the voltage of an analog input and returns the corresponding
digital value.

Syntax
ret_val = ADC(channel)

Parameters

Notes
ADC is a combination of consecutive functions:

• Set_Mux: Set the multiplexer to the specified input channel.
• Wait for settling of the multiplexer.
• Start_Conv: Start measurement: Convert analog signal to a digital

value.
• Wait_EOC: Wait for end of conversion.
• ReadADC: Read out digital value from the register and return it.

Multiplexer settling time and conversion time are given on page 17.

If you indicate a non-existing input channel the measurement result will
be undefined.

If you set the process cycle time (Processdelay) to a value less than
20 µs, the execution time of the instruction is only half as long. This is
possible, because the compiler skips the waiting time for the settling of
the multiplexer. It is assumed that you want to execute a measurement
without setting the multiplexer.
If (at such short cycle times) you require the first measurement to be cor-
rect, you have to set the multiplexer to the specified input channel prior
to using ADC with Set_Mux for the first time. This time has to be at least
as long as the multiplexer settling time.

In the following examples the instructions Set_Mux, Start_Conv,
Wait_EOC and ReadADC should be used instead of ADC in the following
cases:

• Very short cycle times: Processdelay < 240 (s.a.).
• High internal resistance (>3kΩ) of the voltage source of the

measurement signal: This increases the settling time of multiplexer.
• You want to use inevitable waiting times for additional program tasks.

The measurement range depends on the gain factor:

With the following formula you can calculate the measured voltage from
the returned digital value.

The following values, shown in the table below, apply in case you have
chosen a gain of 1 (measurement range of 20 Volt):

channel Number (1, 3, 5, …, 15) of analog input. LONG

ret_val Measurement value in digits (0…65,535). LONG

Gain factor Input voltage
range

Measure-
ment range

1 -10V … 10V 20V
2 -5V … 5V 10V
4 -2.5V … 2.5V 5V
8 -1.25V … 1.25V 2.5V

Voltage Digits 32768bipolar–() measurement range
65536

--⋅=

Analog Inputs and Outputs
ADC ADwin

66 ADwin-light-16 , manual version 3.5, November 2013

See also
ReadADC, Set_Mux, Start_Conv, Wait_EOC, L16_Mode

Valid for
L16

Example
Dim iw As Long 'Declaration

Event:
Rem Measure analog input 1
iw = ADC(1)
Rem Write measurement value into global variable, so
Rem that the computer can read it
Par_1 = iw

Measurement
range

Return value of ADC
1 Digit is

0 32768 65535

20V -10V 0V +9.999695
V 305.175µV

ADwin-light-16 , manual version 3.5, November 2013 67

Analog Inputs and Outputs
L16_ModeADwin

L16_ModeL16_Mode sets the operating mode of ADwin-light-16 Rev. B.

Syntax
#Include ADWL16.Inc

L16_Mode(mode)

Parameters

Notes
In standard mode the device runs fully compatible to revision A. After
power-up the device is always set to standard mode.

In fast mode the A/D converter runs with maximum sampling rate of
500kHz.

See also
ADC, ReadADC, Set_Mux, Start_Conv, Wait_EOC

Valid for
L16 Rev. B

Example
#Include ADWL16.Inc

Init:
REM activate fast mode
L16_Mode(1)

mode Bit pattern to set the operating mode. LONG

Bits in mode Meaning
Bit 0: Bit = 0: Standard operation

(default).
Bit = 1: Fast operation.

Bits 1…31: Reserved

Analog Inputs and Outputs
ReadADC ADwin

68 ADwin-light-16 , manual version 3.5, November 2013

ReadADC ReadADC returns a converted value from a 16-bit A/D-converter.

Syntax
ret_val = ReadADC(1)

Parameters

Notes
- / -

See also
ADC, Set_Mux, Start_Conv, Wait_EOC, L16_Mode

Valid for
L16

Example
Event:
'Set multiplexer to channel 3
Set_Mux(001b)
Rem wait for MUX settling time
Rem …
Start_Conv(1) 'Start ADC conversion
Wait_EOC(1) 'Wait for end of conversion
Par_1 = ReadADC(1) 'Read value of ADC1

1 The number of the A/D converter to read. LONG

ret_val Measurement value in digits which corresponds to
the voltage at the converter’s input.

LONG

ADwin-light-16 , manual version 3.5, November 2013 69

Analog Inputs and Outputs
Seq_InitADwin

Seq_InitSeq_Init initializes the sequential control.
These settings are done: Operating mode, gain factor, channel selection and
muliplexer settling time.

Syntax
#Include ADWL16.Inc

Seq_Init(mode, gain, channels, muxtime)

Parameters

Notes
After power-up mode 0 is active.

Modes 1 … 3 activate the sequential control, which converts several
channels consecutively; according to the mode the conversion cycle is
done once or cyclic. The sequential control is always related to those
channels being selected by channels.

The modes differ in the following items:

mode Operating mode of the sequential control:
0: Standard mode (default), single conversion.
1: Mode "single shot", single conversion cycle.
2: Mode "continuous", continuous conversion.
3: Mode "continuous max" using max. speed.

LONG

gain Gain factor (Modes 1 … 3 only):
0 factor = 1, voltage range -10V…+10V.
1 factor = 2, voltage range -5V…+5V.
2 factor = 4, voltage range -2.5V…+2.5V.
3 factor = 8, voltage range -1.25V…+1.25V.

LONG

channels Bit pattern to select the channels for conversion.
Bit = 0: No conversion.
Bit = 1: Do conversion.

LONG

Bit no. 31:15 14 13 12 … 3 2 1 0
Channel no. – 15 – 11 … – 3 – 1

muxtime Number of time units, which sets the settling time
of the sequential control:
0: Standard waiting time (200 5µs).
200…2^31: Waiting time in units of 25ns.

LONG

Mode Kind of conversion
0 Standard: Single conversion of one channel, see ADC.
1 Single

shot:
The sequential control is started by Start_Conv;
it ends as soon as each of the selected chan-
nels is converted once.
The end of the sequential control is queried
with Wait_EOC and measurement values are
read with Seq_Read.

=̂

Analog Inputs and Outputs
Seq_Init ADwin

70 ADwin-light-16 , manual version 3.5, November 2013

Please note for mode 2 (continuous): The synchronization happens only
once and is only valid for the set cycle time (Processdelay). If the pro-
cess timing changes, e.g. by changing the cycle time, the synchroniza-
tion is lost. The consequence is, measurement values are being read to
early and thus multiple, or measurement values are lost, because they
are already overwritten by new values before reading.

The multiplexer settling time (parameter muxtime) sets the time be-
tween 2 conversions of the sequential control. We recommend, not to
underrun the given range of values, because a shorter settling time
leads to more imprecise or even wrong measurement values.
If the internal resistance of the voltage source of the measurement sig-
nal is too high, the predefined settling time of the multiplexer will not be
sufficient for an exact measurement. You can then raise the multiplexer
settling time with a higher value of the parameter muxtime.

See also
ADC, Seq_Read, Start_Conv, Wait_EOC

Valid for
L16 Rev. B

2 continu-
ous:

The sequential control converts all selected
channels for each process cycle.
The conversion is started with Start_Conv as
last instruction in section Init:. The end of
conversion (for all channels) is automatically
synchronized with the beginning of the next
process cycle. Therefore all measurement
va lues can–and shou ld be–read w i th
Seq_Read at the beginning of each process
cycle .

3 continu-
ous max:

The sequential control converts the selected
channels continuously with maximum speed,
providing new measurement values all the
time. That is, conversion and process cycle run
non-synchronously.
The conversion is started with Start_Conv in
section Init: . Inside a process cycle,
Seq_Read just reads the newest measure-
ment value.

ADwin-light-16 , manual version 3.5, November 2013 71

Analog Inputs and Outputs
Seq_InitADwin

Example
#Include ADWL16.Inc

Dim Data_1[8] As Long At DM_Local
Dim i As Long

Init:
REM Sequential control: Continuous Mode, gain 2
REM channels 1, 3, ..., 15, standard settling time
Seq_Init(3,1,5555h,0)
Start_Conv(1) 'Start conversion cycle

Event:
REM The conversion of all selected channels has just
REM ended, so measurement values are read.
For i = 1 To 8
Data_1[i] = Seq_Read(i*2-1) 'read values

Next i
REM process values

Analog Inputs and Outputs
Seq_Read ADwin

72 ADwin-light-16 , manual version 3.5, November 2013

Seq_Read Seq_Read returns the last saved measurement value of the selected channel.

Syntax
#Include ADWL16.Inc

ret_val = Seq_Read(channel)

Parameters

Notes
You can only reasonably use this instruction if the sequential control of
the module has been activated before with Seq_Init and if the given
channel has been selected, too.

In "single shot" mode the end of conversion must be queried with
Wait_EOC, before reading the measurement values.

See also
Seq_Init, Start_Conv, Wait_EOC

Valid for
L16 Rev. B

Example
#Include ADWL16.Inc

Dim Data_1[400] As Long At DM_Local

Init:
REM sequential control: Single shot, gain 1
REM channels 5, 7, 13, 15, standard settling time
Seq_Init(1,0,101000001010000b,0)
Start_Conv(1) 'start conversion cycle

Event:
Wait_EOC(1) 'wait for end of conversion
REM read channels 5, 7, 13, 15
Data_1[1] = Seq_Read(5)
Data_1[2] = Seq_Read(7)
Data_1[3] = Seq_Read(13)
Data_1[4] = Seq_Read(15)
Start_Conv(1) 'start next conversion cycle

channel Channel no. (1, 3, …, 15). LONG

ret_val Measurement value (0…65535) of selected chan-
nel.

LONG

ADwin-light-16 , manual version 3.5, November 2013 73

Analog Inputs and Outputs
Set_MuxADwin

Set_MuxSet_Mux sets the A/D input multiplexer to the selected channel.

Syntax
Set_Mux(pattern)

Parameters

Notes
Please consider that when setting the multiplexer to another channel a
specified settling time is required. You should only start the conversion
after this settling time has elapsed.

Multiplexer settling time and conversion time are given on page 17.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal or
hexadecimal representation although it is still possible to use these.

See also
ADC, ReadADC, Start_Conv, Wait_EOC, L16_Mode

Valid for
L16

Example
Dim val As Long

Event:
Set_Mux(0) 'Set multiplexer to channel 1
Rem Wait here for the settling time of the multiplexer
Rem by inserting some instructions.
Start_Conv(1) 'Start AD-conversion ADC1
Wait_EOC(1) 'Wait for end of conversion of

'ADC
val = ReadADC(1) 'Read value of ADC1

pattern Bit pattern for the allocation of measurement
channels and gain.

LONG

MUX The bits 0…2 determine the channel to which the
multiplexer is set:
000: Channel 1
001: Channel 3
010: Channel 5
011: Channel 7
100: Channel 9
101: Channel 11
110: Channel 13
111: Channel 15

Analog Inputs and Outputs
Start_Conv ADwin

74 ADwin-light-16 , manual version 3.5, November 2013

Start_Conv START_CONV can start the conversion of the A/D converter and of all D/A con-
verters.

Syntax
Start_Conv(pattern)

Parameters

Notes
You can only use constants as parameters, variables are not allowed.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal or
hexadecimal representation although it is still possible to use these.

See also
ADC, ReadADC, Set_Mux, Wait_EOC, L16_Mode

Valid for
L16

Example
Dim val1 As Long

Event:
Set_Mux(0) 'Set multiplexer to channel 1
Rem Bypass the settling time with command lines
Start_Conv(1) 'Start ADC1 A/D-conversion
Wait_EOC(1) 'Wait for end of conversion
val1 = ReadADC(1) 'Read out value

Multiplexer settling time is given on page 17.

pattern Bit pattern that specifies which converters should
be started (only bits 0 and 2 can be used):
1: start conversion.
0: do not start conversion.

CONST

LONG

Bit no. 31…3 2 1 0
ADC1, 16-bit – – – x
all DACs – x – –

ADwin-light-16 , manual version 3.5, November 2013 75

Analog Inputs and Outputs
Wait_EOCADwin

Wait_EOCWAIT_EOC waits for the end of the A/D conversion.

Syntax
Wait_EOC(1)

Parameters

Notes
Always select the bits of existing ADCs. Otherwise the communication
in a high-priority process between ADwin system and computer will be
interrupted.

See also
ADC, ReadADC, Set_Mux, Start_Conv, L16_Mode

Valid for
L16

Example
Dim val1 As Long

Event:
Set_Mux(0) 'Set MUX to channel 1
Rem Bypass the settling time of the multiplexer with
Rem command lines
Start_Conv(1) 'Start A/D-conversion ADC1
Wait_EOC(1) 'Wait for end of conversion
val1 = ReadADC(1) 'Read out value

Multiplexer settling time is given on page 17.

Only the constant 1 is allowed as passed parameter. The param-
eter is interpreted as bit pattern to specify the converter.

CONST

LONG

Analog Inputs and Outputs
Wait_EOC ADwin

76 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 77

Digital Inputs and OutputsADwin
13.3 Digital Inputs and Outputs
This section describes the following instructions:

– Clear_Digout (page 78)

– Digin (page 79)

– Digin_Word (page 80)

– Digout_Word (page 81)

– Set_Digout (page 82)

– Conf_DIO_E (page 83)

– Digin_Word1_E (page 84)

– Digin_Word2_E (page 85)

– Digin_Long_E (page 86)

– Digout_Reset1_E (page 87)

– Digout_Reset2_E (page 88)

– Digout_Set1_E (page 89)

– Digout_Set2_E (page 90)

– Digout_Word1_E (page 91)

– Digout_Word2_E (page 92)

– Digout_Long_E (page 93)

Digital Inputs and Outputs
Clear_Digout ADwin

78 ADwin-light-16 , manual version 3.5, November 2013

Clear_Digout CLEAR_DIGOUT sets one of the digital outputs to 0 (TTL low).

Syntax
Clear_Digout(bit_no)

Parameters

Notes
Clear_Digout accepts only constants as parameter. If you want to
specify the output to be deleted using a variable, use Digout_Word.

See also
Digout_Word, Set_Digout

Valid for
L16, L16-CO1, L16-DIO1, L16-DIO2, L16-DIO3

Example
Dim val As Long 'Declaration

Init:
Set_Digout(0) 'Set digital output 0 to level

'high

Event:
val = ADC(1) 'Measurement data acquisition
If (val > 3000) Then
Clear_Digout(0) 'Set dig. output 0 to level low

EndIf

bit_no Bit number (0…5) which specifies the output (see
table).

CONST

LONG

bit_no 0 1 … 5
Output 0 1 … 5

ADwin-light-16 , manual version 3.5, November 2013 79

Digital Inputs and Outputs
DiginADwin

DiginDIGIN returns the value of one of the digital inputs 0…5.

Syntax
ret_val = Digin(channel_no)

Parameters

Notes
Digin accepts only constants as parameter.

This instruction fits best for the reading of few bits. If several bits are to
be read (e.g. in a loop), the usage of DIGIN_WORD is definitely quicker.
Please remember this for time-critical applications in particular.

See also
Digin_Word, Digout_Word

Valid for
L16

Example
Dim Data_1[10000] As Long As FIFO

Event:
Rem Is digital input 0 set?
If (Digin(0) = 1) Then
Data_1 = ADC(1) 'Measurement data acquisition

EndIf

channel_n
o

Number which specifies the input to be queried: LONG

CONST

ret_val 1:TTL-level high.
0: TTL-level low.

LONG

channel_no 0 … 5
Eingang Nr. 0 … 5

Digital Inputs and Outputs
Digin_Word ADwin

80 ADwin-light-16 , manual version 3.5, November 2013

Digin_Word DIGIN_WORD returns the values of all digital inputs at the same time.

Syntax
ret_val = Digin_Word()

Parameters

Notes
- / -

See also
Digin, Digout_Word

Valid for
L16

Example
Dim Data_1[10000] As Long As FIFO

Event:
Rem Query if inputs 0 and 1 are set
If ((Digin_Word() And 11b) = 11b) Then
Data_1 = ADC(1) 'Measurement data acquisition

EndIf

ret_val Bit pattern that corresponds to the TTL-levels at
the digital inputs (see table).
1: TTL-level high.
0: TTL-level low.

LONG

Bit number in
ret_val

31 …6 5 … 0

Input No. – 5 … 0

ADwin-light-16 , manual version 3.5, November 2013 81

Digital Inputs and Outputs
Digout_WordADwin

Digout_WordDIGOUT_WORD sets all digital outputs to defined TTL-levels with a bit pattern.

Syntax
Digout_Word(pattern)

Parameters

Notes
- / -

See also
Clear_Digout, Digin_Word, Set_Digout

Valid for
L16

Example
Dim value As Long

Event:
value = ADC(1) 'Measurement data acquisition
If (value > 3000) Then'Is the limit value exceeded?
Digout_Word(101b) 'Set outputs 0 and 2,

'clear all other outputs
EndIf

pattern Bit pattern that corresponds to the TTL-levels at
the digital outputs (see table).
1: Set to TTL-level high.
0: Set to TTL-level low.

LONG

Bit number in
pattern

31 …6 5 … 0

Output No. – 5 … 0

Digital Inputs and Outputs
Set_Digout ADwin

82 ADwin-light-16 , manual version 3.5, November 2013

Set_Digout SET_DIGOUT sets one of the digital outputs to 1 (TTL-level high).

Syntax
Set_Digout(bit_no)

Parameters

Notes
Set_Digout accepts only a constant as parameter bit_no.

Set_Digout fits best for the setting of few bits. If several bits are to be
set (e.g. in a loop), the usage of DIGOUT_WORD is definitely quicker.
Please remember this for time-critical applications in particular.

If you want to set the output using a variable, use Digout_Word.

See also
Clear_Digout, Digout_Word

Valid for
L16

Example
Dim val As Long

Event:
val = ADC(1) 'Measurement data acquisition
If (val > 3000) Then
Set_Digout(0) 'Set digital output 0 to level

'high
EndIf

bit_no Bit number (0…5) which specifies the output (see
table).

CONST

LONG

bit_no 0 1 … 5
Output 0 1 … 5

ADwin-light-16 , manual version 3.5, November 2013 83

Digital Inputs and Outputs
Conf_DIO_EADwin

Conf_DIO_ECONF_DIO_E configures the digital channels as inputs or outputs in groups of
8.

Syntax
#Include ADWL16.Inc

Conf_DIO_E(pattern)

Parameters

Notes
After power-up all digital I/O-lines are configured as inputs and cannot
be accessed as outputs. Channels can be configured in groups of 8 as
inputs or outputs.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal or
hexadecimal representation although it is still possible to use these.

See also
Dig in_Word1_E , D ig in_Word2_E, D igou t_Rese t1_E,
Digout_Reset2_E, Digout_Set1_E, Digout_Set2_E, Digout_Word1_E,
Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(1100b) 'Configures DIOs 15:00 as inputs

'and
'DIOs 31:16 as outputs.

pattern Bit pattern, that configures the digital channels as
inputs or outputs:
Bit=0: Channels as inputs.
Bit=1: Channels as outputs.

LONG

Bi t no . i n
pattern

15…4 3 2 1 0

Channels – DIO31
…

DIO24

DIO23
…

DIO16

DIO15
…

DIO08

DIO07
…

DIO00

Digital
Inputs
and Outputs

Digital Inputs and Outputs
Digin_Word1_E ADwin

84 ADwin-light-16 , manual version 3.5, November 2013

Digin_Word1_E DIGIN_WORD1_E returns the values of the digital inputs 0...15 at the same
time.

Syntax
#Include ADWL16.Inc

ret_val = Digin_Word1_E()

Parameters

Notes
If you have configured the channels as outputs, the contents of the out-
put register of these bits is returned.

See also
Conf_DIO_E, Digin_Word2_E, Digout_Reset1_E, Digout_Reset2_E,
Digout_Set1_E, Digout_Set2_E, Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(1100b) 'Configures DIOs 15:00 as inputs

'and
'DIOs 31:16 as outputs

Event:
Par_1 = Digin_Word1_E()'Read low-word (bits 15:00)

ret_val Bit pattern, that corresponds to the TTL-level at
the digital inputs.
1: TTL-level high.
0: TTL-level low.

LONG

Bit number
in ret_val

31 …
16

15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

ADwin-light-16 , manual version 3.5, November 2013 85

Digital Inputs and Outputs
Digin_Word2_EADwin

Digin_Word2_EDIGIN_WORD2_E returns the values of the digital inputs 16...31 at the same
time.

Syntax
#Include ADWL16.Inc

ret_val = Digin_Word2_E()

Parameters

Notes
If you have configured the channels as outputs, the contents of the out-
put register of these bits is returned.

See also
Conf_DIO_E, Digin_Word1_E, Digout_Reset1_E, Digout_Reset2_E,
Digout_Set1_E, Digout_Set2_E, Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(0) 'Configure DIOs 31:00 as inputs

'like in power-up status

Event:
Par_1 = Digin_Word1_E()'Read low-word (bits 15:00)
Par_2 = Digin_Word2_E()'Read high-word (bits 31:16)

ret_val Bit pattern, that corresponds to the TTL-level at
the digital inputs.
1: TTL-level high.
0: TTL-level low.

LONG

Bit number
in ret_val

31 …
16

15 14 … 1 0

Input No. – DIO31 DIO30 … DIO17 DIO16

Digital Inputs and Outputs
Digin_Long_E ADwin

86 ADwin-light-16 , manual version 3.5, November 2013

Digin_Long_E Digin_Long_E returns the values of the digital inputs 0...31 at the same time.

Syntax
#Include ADWL16.Inc

ret_val = Digin_Long_E()

Parameters

Notes
If you have configured the channels as outputs, the contents of the out-
put register of these bits is returned.

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset1_E,
Digout_Reset2_E, Digout_Set1_E, Digout_Set2_E, Digout_Word1_E,
Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(0) 'Configure DIOs 31:00 as inputs

'like in power-up status

Event:
Par_1 = Digin_Word1_E()'Read low-word (bits 15:00)
Par_2 = Digin_Long_E()'Read high-word (bits 31:16)

ret_val Bit pattern, that corresponds to the TTL-level at
the digital inputs.
1: TTL-level high.
0: TTL-level low.

LONG

Bit number
in ret_val

31 30 … 1 0

Input No. DIO31 DIO30 … DIO01 DIO00

ADwin-light-16 , manual version 3.5, November 2013 87

Digital Inputs and Outputs
Digout_Reset1_EADwin

Digout_Reset1_EDIGOUT_RESET1_E sets the selected digital outputs 0...15 to TTL-level low.

Syntax
#Include ADWL16.Inc

Digout_Reset1_E(clear)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset2_E,
Digout_Set1_E, Digout_Set2_E, Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(0011b) 'Configures DIOs 15:00 as

outputs
'and
'DIOs 31:16 as inputs

Init:
Par_1 = 5555h 'Delete all odd-numbered bits of

'the
'low-word upon output.

Digout_Word1_E(0FFFFh)'Output DIO-bits 15:00

Event:
Digout_Reset1_E(Par_1)'Delete DIO-bits equivalent to Par_1
Par_1 = Par_1 XOr 0FFFFh'Invert output-word
Digout_Word1_E(Par_1)'Output DIO-bits 15:00

clear Bit pattern for setting specified outputs:
Bit = 1: Set to TTL-level low.
Bit = 0: no influence.

LONG

Bit number
in clear

31 …
16

15 14 … 1 0

Output No. – DIO15 DIO14 … DIO01 DIO00

Digital Inputs and Outputs
Digout_Reset2_E ADwin

88 ADwin-light-16 , manual version 3.5, November 2013

Digout_Reset2_E DIGOUT_RESET2_E sets the selected digital outputs 16…31 to TTL-level low.

Syntax
#Include ADWL16.Inc

Digout_Reset2_E(clear)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset1_E,
Digout_Set1_E, Digout_Set2_E, Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(1100b) 'Configure DIOs 15:00 as inputs

'and
'DIOs 31:16 as outputs

Init:
Par_2 = 5555h 'Clear all odd-numbered bits of

'the
'high-word during output.

Digout_Word2_E(0FFFFh)'Output DIO bits 31:16

Event:
Digout_Reset2_E(Par_2)'Clear DIO bits according to Par_2
Par_2 = Par_2 XOr 0FFFFh'Invert output-word
Digout_Word2_E(Par_2) 'Output DIO bits 31:16

clear Bit pattern for setting specified outputs.
Bit = 1: Set to TTL-level low.
Bit = 0: no influence.

LONG

Bit number
in clear

31 …
16

15 14 … 1 0

Output No. – DIO31 DIO30 … DIO17 DIO16

ADwin-light-16 , manual version 3.5, November 2013 89

Digital Inputs and Outputs
Digout_Set1_EADwin

Digout_Set1_EDIGOUT_SET1_E sets the selected digital ouptuts 0...15 to TTL-level high.

Syntax
#Include ADWL16.Inc

Digout_Set1_E(set)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset1_E,
Digout_Reset2_E, Digout_Set2_E, Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(0011b) 'Configures DIOs 15:00 as

outputs
'and
'DIOs 31:16 as input

Par_1 = 0AAAAh 'Set all even-numbered bits of
'the
'low-word during the output

Digout_Word1_E(0) 'Output DIO bits 15:00

Event:
Digout_Set1_E(Par_1) 'Set DIO bits according to Par_1
Par_1 = Par_1 XOr 0FFFFh'Invert output-word
Digout_Word1_E(Par_1)'Output DIO bits 15:00

set Bit pattern to set specified outputs:
Bit = 1: Set to TTL-level high.
Bit = 0: No change.

LONG

Bit number
in set

31 …
16

15 14 … 1 0

Output No. – DIO15 DIO14 … DIO01 DIO00

Digital Inputs and Outputs
Digout_Set2_E ADwin

90 ADwin-light-16 , manual version 3.5, November 2013

Digout_Set2_E DIGOUT_SET2_E sets the selected digital outputs 16...31 to TTL-level high.

Syntax
#Include ADWL16.Inc

Digout_Set2_E(set)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset1_E,
Digout_Reset2_E, Digout_Set1_E, Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(1100b) 'Configure DIOs 15:00 as inputs

'and
'DIOs 31:16 as outputs

Par_1 = 0AAAAh 'Set even-numbered bits of the
'low-word during output

Digout_Word2_E(0) 'Set DIO bits 31:16 to level low

Event:
Digout_Set2_E(Par_2) 'Set DIO bits 31:16 according to

'Par_2
Par_2 = Par_2 XOr 0FFFFh 'Invert output-word
Digout_Word2_E(Par_2) 'Output DIO bits 31:16

set Bit pattern to set specified outputs.
Bit = 1: Set to TTL-level high.
Bit = 0: No change.

LONG

Bit number
in set

31 …
16

15 14 … 1 0

Output No. – DIO31 DIO30 … DIO17 DIO16

ADwin-light-16 , manual version 3.5, November 2013 91

Digital Inputs and Outputs
Digout_Word1_EADwin

Digout_Word1_EDIGOUT_WORD1_E sets all digital outputs 0...15 to specified TTL-levels using
a bit pattern.

Syntax
#Include ADWL16.Inc

Digout_Word1_E(pattern)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset1_E,
Digout_Reset2_E, Digout_Set1_E, Digout_Set2_E, Digout_Word2_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(0011b) 'Conigures DIOs 15:00 as outputs

'and
'DIOs 31:16 as inputs

Par_1 = 5555h 'Set all odd-numbered bits of the
'low-word

Event:
Digout_Word1_E(Par_1) 'Output DIO bits 15:00

pattern Bit pattern, corresponding to the TTL level desired
at the digital outputs.
Bit = 1: Set to TTL-level high.
Bit = 0: Set to TTL-level low.

LONG

Bit number
in pattern

31 …
16

15 14 … 1 0

Output No. – DIO15 DIO14 … DIO01 DIO00

Digital Inputs and Outputs
Digout_Word2_E ADwin

92 ADwin-light-16 , manual version 3.5, November 2013

Digout_Word2_E DIGOUT_WORD2_E sets all the digital outputs 16…31 to specified TTL-levels
using a bit pattern.

Syntax
#Include ADWL16.Inc

Digout_Word2_E(pattern)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digout_Reset1_E,
Digout_Reset2_E, Digout_Set1_E, Digout_Set2_E, Digout_Word1_E

Valid for
L16-DIO1, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(12) 'Configures DIOs 15:00 as inputs

'and
'DIOs 31:16 as outputs

Par_2 = 0AAAAh 'Set all even-numbered bits of
'the
'low-word.

Event:
Digout_Word2_E(Par_2) 'Output DIO bits 31:16

pattern Bit pattern, corresponding to the TTL level desired
at the digital outputs.
Bit = 1:Set to TTL-level high.
Bit = 0: Set to TTL-level low.

LONG

Bit number
in pattern

31 …
16

15 14 … 1 0

Output No. – DIO31 DIO30 … DIO17 DIO16

ADwin-light-16 , manual version 3.5, November 2013 93

Digital Inputs and Outputs
Digout_Long_EADwin

Digout_Long_EDigout_Long_E sets all the digital outputs 0…31 to specified TTL-levels
using a bit pattern.

Syntax
#Include ADWL16.Inc

Digout_Long_E(pattern)

Parameters

Notes
- / -

See also
Conf_DIO_E, Digin_Word1_E, Digin_Word2_E, Digin_Long_E,
Digout_Reset1_E, Digout_Reset2_E, Digout_Set1_E, Digout_Set2_E,
Digout_Word1_E, Digout_Word2_E

Valid for
L16-DIO3, L16-DIO2, L16-DIO3

Example
#Include ADWL16.Inc

Init:
Conf_DIO_E(12) 'Configures DIOs 15:00 as inputs

'and
'DIOs 31:16 as outputs

Par_2 = 0AAAAh 'Set all even-numbered bits of
'the
'low-word.

Event:
Digout_Long_E(Par_2) 'Output DIO bits 31:16

pattern Bit pattern, corresponding to the
TTL level desired at the digital outputs.
Bit = 1:Set to TTL-level high.
Bit = 0: Set to TTL-level low.

LONG

Bit number
in pattern

31 30 … 1 0

Output No. DIO31 DIO30 … DIO01 DIO00

Digital Inputs and Outputs
Digout_Long_E ADwin

94 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 95

CounterADwin
13.4 Counter
This section describes the following instructions:

– Cnt_Clear (page 96)

– Cnt_ClearEnable (page 98)

– Cnt_Enable (page 99)

– Cnt_GetStatus (page 100)

– Cnt_InputMode (page 102)

– Cnt_Latch (page 103)

– Cnt_Mode (page 104)

– Cnt_Read (page 105)

– Cnt_ReadLatch (page 106)

– Cnt_ReadFLatch (page 108)

– Cnt_Set (page 109)

Counter
Cnt_Clear ADwin

96 ADwin-light-16 , manual version 3.5, November 2013

Cnt_Clear Cnt_Clear sets one or more counters to zero, according to the bit pattern in
pattern.

Syntax
#Include ADWL16.Inc

Cnt_Clear(pattern)

Parameters

Notes
After Cnt_Clear has been executed the bit pattern is automatically re-
set to 0 (zero), so the counters start counting from 0.

See also
Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode,
Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch,
Cnt_Set

Valid for
L16, L16-CO1, L16-DIO1, L16-DIO2

pattern Bit pattern.
Bit = 0: no influence.
Bit = 1: set counter to zero.

LONG

Bit no. 31…2 1 0
Coun te r
no.

– 2a

a. not available with add-on
CO1

1

ADwin-light-16 , manual version 3.5, November 2013 97

Counter
Cnt_ClearADwin

Example
#Include ADWL16.Inc

Dim old_1, new_1 As Long'Dimension
Dim old_2, new_2 As Long' variables

Init:
old_1 = 0 'Initialize
old_2 = 0 ' variables
Cnt_Mode(0) 'All counters on external clock

'input
Cnt_Set(11b) 'counters 1+2 with clock (CLK)

'and
'direction (DIR) input

Cnt_InputMode(0) 'Determine functionality
'CLR/LATCH: All as CLR

Cnt_ClearEnable(11b) 'Enables the CLR function of
'counters 1+2

Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
Cnt_Latch(11b) 'Latch counters 1+2

'simultaneously
new_1 = Cnt_ReadLatch(1)'read out Latch A counter 1 and...
new_2 = Cnt_ReadLatch(2)'Latch A counter 2.
Par_1 = new_1 - old_1 'Calculate the difference (f =

'impulses / time)
Par_2 = new_2 - old_2 ' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

Counter
Cnt_ClearEnable ADwin

98 ADwin-light-16 , manual version 3.5, November 2013

Cnt_ClearEnable Cnt_ClearENABLE disables or enables the CLR input of one or more coun-
ters according to the bit pattern in pattern.

Syntax
#Include ADWL16.Inc '

Cnt_ClearEnable(pattern)

Parameters

Notes
This instruction affects all counters at the same time. It only works if the
CLR mode is set by Cnt_InputMode.

Use this instruction only if the counter is disabled.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_Set

Valid for
L16-DIO1, L16-DIO2

Example
see Cnt_Clear

pattern Bit pattern.
Bit = 0: disable CLR input at the counter.
Bit = 1: enable CLR input at the counter.

LONG

Bit no. 31…2 1 0
Coun te r
no.

– 2 1

ADwin-light-16 , manual version 3.5, November 2013 99

Counter
Cnt_EnableADwin

Cnt_EnableCnt_Enable disables or enables the counters set by pattern, to count inco-
ming impulses.

Syntax
#Include ADWL16.Inc

Cnt_Enable(pattern)

Parameters

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_GetStatus, Cnt_InputMode,
Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch,
Cnt_Set

Valid for
L16, L16-CO1, L16-DIO1, L16-DIO2

Example
see Cnt_Clear

pattern Bit pattern.
Bit = 0: stop counter.
Bit = 1: enable counter.

LONG

Bit no. 31…2 1 0
Coun te r
no.

– 2a

a. not available with add-on
CO1

1

Counter
Cnt_GetStatus ADwin

100 ADwin-light-16 , manual version 3.5, November 2013

Cnt_GetStatus Cnt_GetStatus reads out and returns the counter status register.

Syntax
#Include ADWL16.Inc

ret_val = Cnt_GetStatus()

Parameters

Notes
- / -

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_Set

Valid for
L16-DIO1, L16-DIO2

ret_val Contents of the status register:
In case of error, refer to the table for the meaning
of the individual bits.

LONG

Bit
no.

31…
28

2
7

2
6

2
5

2
4

23…
20

1
9

1
8

1
7

1
6

15…
06

0
5

0
4

03…
02

0
1

0
0

Sig-
nal

- L
2

C
2

L
1

C
1

- B
2

A
2

B
1

A
1

- N
2

N
1

- R
2

R
1

 - :don't care (signal status is not defined, mask out with 0F 0F 00 33h)
Ax:Signal A (signal is not changing states)
Bx: Signal B (signal is not changing states)
Cx:Correlation error* (signals A and B are identical, they are not phase-shifted by
approx. 90°)
Lx: Line error* (cable not connected or the line is broken)
Nx:CLR-/LATCH-input (signal is not changing states)
Rx:Reset-Enable (value which was set by Cnt_ClearEnable)
x:Counter number (1 or 2)

* Auto-Reset (is reset during reading out)

ADwin-light-16 , manual version 3.5, November 2013 101

Counter
Cnt_GetStatusADwin

Example
#Include ADWL16.Inc
Dim error As Long

Init:
Cnt_Mode(0) 'All counters at external clock

'input
Cnt_Set(0) 'All counters with A/B-input

'(for
'instance for incremental
'encoder)

Cnt_InputMode(0) 'Determine functionality
'CLR/LATCH: At
'all counters as CLR-input

Cnt_ClearEnable(11b) 'Enables the CLR-function of
'counters 1+2

Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(1) 'Start counter 1
error = 0 'Reset error indicator

Event:
Par_1 = Cnt_Read(1) 'Read out counter 1
REM Read out counter status register
Par_2 = Cnt_GetStatus() And 0F0F0033h
If (Par_2 And 2000000h = 2000000h) Then'Line or cable error

'counter 1?
Inc Par_3 'Number of line or cable errors

'until
'now...

error = 1 'Set error indicator
EndIf
If (Par_2 And 1000000h = 1000000h) Then'Correlation error

'counter 1?
Inc Par_4 'Number of correlation errors

'until
'now...

error = 1 'Set error indicator
EndIf
Par_5 = Shift_Right(Par_2 And 10h,4)

'current status of CLR-input
Par_6 = Shift_Right(Par_2 And 10000h,16)

'current status of input A.
Par_7 = Shift_Right(Par_2 And 20000h,17)

'current status of input B.

Counter
Cnt_InputMode ADwin

102 ADwin-light-16 , manual version 3.5, November 2013

Cnt_InputMode CNT_INPUTMODE sets the function of the CLR/LATCH input of one or more
counters.

Syntax
#Include ADWL16.Inc

Cnt_InputMode(pattern)

Parameters

Notes
Use this instruction only when the counter is not enabled.

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_Set

Valid for
L16-DIO1, L16-DIO2

Example
see Cnt_Clear

pattern Bit pattern.
Bit = 0: Set CLR-mode.
Bit = 1: Set LATCH-mode.

LONG

Bit no. 31…2 1 0
Coun te r
no.

– 2 1

ADwin-light-16 , manual version 3.5, November 2013 103

Counter
Cnt_LatchADwin

Cnt_LatchCnt_Latch transfers the current counter values of one or more counters into
the relevant Latch A, depending on the bit pattern in pattern.

Syntax
#Include ADWL16.Inc

Cnt_Latch(pattern)

Parameters

Notes
After the instruction has been executed the bit pattern is automatically
reset to 0 (zero).

Latch A is read out into a variable with Cnt_ReadLatch command.

Valid for
L16, L16-CO1, L16-DIO1, L16-DIO2

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus,
Cnt_InputMode, Cnt_Mode, Cnt_Read, Cnt_ReadLatch,
Cnt_ReadFLatch, Cnt_Set

Example
see Cnt_Clear

pattern Bit pattern.
Bit = 0: no function.
Bit = 1: transfer counter values into Latch A .

LONG

Bit no. 31…2 1 0
Counter no. – 2a

a. not available with add-on CO1
1

Counter
Cnt_Mode ADwin

104 ADwin-light-16 , manual version 3.5, November 2013

Cnt_Mode Cnt_Mode defines the operating mode of all counters by selecting which clock
input they use according to the bit pattern in pattern.

Syntax
#Include ADWL16.Inc

Cnt_Mode(pattern)

Parameters

Notes
Cnt_Set determines the mode of the selected clock input.

Please use Cnt_Mode only when the counter is disabled.

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus,
Cnt_InputMode, Cnt_Latch, Cnt_Read, Cnt_ReadLatch,
Cnt_ReadFLatch, Cnt_Set

Valid for
L16-DIO1, L16-DIO2

Example
see Cnt_Clear

pattern Bit pattern.
Bit = 0: external clock input (CLK/DIR or A/B).
Bit = 1: internal clock input (5 MHz or 20 MHz).

LONG

Bit no. 31…2 1 0
Coun te r
no.

– 2 1

ADwin-light-16 , manual version 3.5, November 2013 105

Counter
Cnt_ReadADwin

Cnt_ReadCnt_Read copies the current counter value into Latch A and returns it as
return value.

Syntax
#Include ADWL16.Inc

ret_val = Cnt_Read(CounterNo)

Parameters

Notes
Use the return value in calculations only with variables of the type Long
(e.g. differences or count direction).

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus,
Cnt_InputMode, Cnt_Latch, Cnt_Mode, Cnt_ReadLatch,
Cnt_ReadFLatch, Cnt_Set

Valid for
L16, L16-CO1, L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Dim old, new As Long 'Dimension

Init:
old = 0 'Initialize
Cnt_Mode(0) 'All counters on external clock

'input
Cnt_Set(1b) 'counter 1 with clock (CLK) and

'direction (DIR) input
Cnt_InputMode(0) 'Determine functionality

'CLR/LATCH: All as CLR
Cnt_ClearEnable(1b) 'Enables the CLR function of

'counter 1
Cnt_Clear(1b) 'Reset counter 1 to 0
Cnt_Enable(1b) 'Start counter 1

Event:
new = Cnt_Read(1) 'read out Latch A counter 1
Par_1 = new - old 'Calculate the difference (f =

'impulses / time)
old = new 'Save new counter values as old

CounterNo Counter number: 1…2; L16-CO1: 1. LONG

ret_val Counter value. LONG

Counter
Cnt_ReadLatch ADwin

106 ADwin-light-16 , manual version 3.5, November 2013

Cnt_ReadLatch Cnt_ReadLatch returns the value of a counter previously stored in Latch A.

Syntax
#Include ADWL16.Inc

ret_val = Cnt_ReadLatch(CounterNo)

Parameters

Notes
Use the return value in calculations only with variables of the type Long
(e.g. differences or count direction).

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus,
Cnt_InputMode, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_ReadFLatch,
Cnt_Set

Valid for
L16, L16-CO1, L16-DIO1, L16-DIO2

Notes
The point of time when the current counter value is latched depends on
the Cnt_Mode settings:

• External clock input (Cnt_Mode bit = 0): Only Cnt_Latch latches
the counter.

• Internal clock input (Cnt_Mode bit = 1): Any edge of the external
measurement signal latches the counter.
At a positive edge of the input signal the counter values are latched
into Latch A, whereas at a negative edge of the input signal the
counter values are latched into Latch B.

CounterNo Counter number: 1…2; L16-CO1: 1. LONG

ret_val Contents of Latch A. LONG

ADwin-light-16 , manual version 3.5, November 2013 107

Counter
Cnt_ReadLatchADwin

Example
#Include ADWL16.Inc
Dim rise, rise_old, fall, fall_old As Long
#Define high Par_1
#Define low Par_2
#Define T Par_9
#Define f Par_10

Init:
rise_old = 0 'Initialize variables
fall_old = 0
Cnt_Mode(11b) 'Counters 1+2 on internal clock

'input
Cnt_Set(0) 'All counters with 20 MHz

'internal
'reference clock (= 50 ns period
'duration)

Cnt_InputMode(11b) 'Determine functionality
'CLR/LATCH: At
'counters 1+2 as LATCH input

Cnt_ClearEnable(0) 'Disables the CLR-function of
all

'counters
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(1) 'Start couner 1

Event:
rise = Cnt_ReadLatch(1) 'Read out Latch A counter 1
fall = Cnt_ReadFLatch(1) 'Read out Latch B counter 1
If (rise <> rise_old) Then 'Is a rising edge detected?
T = (rise - rise_old) * 50 'Period duration in nanoseconds
f = 1E9 / T 'Frequency in Hertz
If (fall <> fall_old) Then 'Is a falling edge detected?
 high = (fall - rise) * 50 'Impulse duration in nanoseconds
 low = (rise - fall_old) * 50 'Pause duration in nanoseconds
Else 'No falling edge is detected
 high = (fall - rise_old) * 50 'Impulse duration in

'nanoseconds
 low = (rise - fall) * 50 'Pause duration in nanoseconds
EndIf

EndIf
rise_old = rise 'Save contents of the latch
fall_old = fall 'Save contents of the latch

Counter
Cnt_ReadFLatch ADwin

108 ADwin-light-16 , manual version 3.5, November 2013

Cnt_ReadFLatch Cnt_ReadFLatch returns the value of a counter previously stored in Latch B.

Syntax
#Include ADWL16.Inc

ret_val = Cnt_ReadFLatch(CounterNo)

Parameters

Comment
Use the return value in calculations only with variables of the type Long
(e.g. differences or count direction).

The point of time when the current counter value is latched depends on
the Cnt_Mode settings:

• External clock input (Cnt_Mode bit = 0): Only Cnt_Latch latches
the counter.

• Internal clock input (Cnt_Mode bit = 1): Any edge of the external
measurement signal latches the counter.
At a positive edge of the input signal the counter values are latched
into Latch A, whereas at a negative edge of the input signal the
counter values are latched into Latch B (see Cnt_ReadFLatch).

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus,
Cnt_InputMode, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_ReadLatch,
Cnt_Set

Valid for
L16-DIO1, L16-DIO2

Example
see Cnt_ReadLatch

CounterNo Counter number: 1…2. LONG

ret_val Contents of Latch B. LONG

ADwin-light-16 , manual version 3.5, November 2013 109

Counter
Cnt_SetADwin

Cnt_SetCNT_SET defines the operating mode for all counters (depending on
Cnt_Mode) according to the given bit pattern.

Syntax
#Include ADWL16.Inc

Cnt_Set(pattern)

Parameters

Comment
Please use this instruction only when the counter is disabled.

See also
Cnt_Clear, Cnt_ClearEnable, Cnt_Enable, Cnt_GetStatus,
Cnt_InputMode, Cnt_Latch, Cnt_Mode, Cnt_Read, Cnt_ReadLatch,
Cnt_ReadFLatch

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Init:
Cnt_Mode(0) 'All counters on external clock

'input
Cnt_Set(00b) 'counters 1+2 with edge

'detection
Cnt_Enable(11b) 'Start counters 1+2

pattern Bit pattern, for the meaning of the bits see table
below.

LONG

Bit value
in

pattern

External clock input
Bit = 0 in Cnt_Mode

Internal clock input
Bit = 1 in Cnt_Mode

Bit = 0 4-edge evaluation Reference clock 20 MHz
Bit = 1 Clock and direction input Reference clock 5 MHz

Bit no. 31…2 1 0
Coun te r
no.

– 2 1

Counter
Cnt_Set ADwin

110 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 111

CAN interfaceADwin
13.5 CAN interface
This section describes the following instructions:

– CAN_Msg (page 112)

– En_Interrupt (page 114)

– En_Receive (page 115)

– En_Transmit (page 116)

– Get_CAN_Reg (page 117)

– Init_CAN (page 118)

– Read_Msg (page 119)

– Read_Msg_Con (page 121)

– Set_CAN_Baudrate (page 123)

– Set_CAN_Reg (page 124)

– Transmit (page 125)

CAN interface
CAN_Msg ADwin

112 ADwin-light-16 , manual version 3.5, November 2013

CAN_Msg CAN_Msg[] is a one-dimensional array, consisting of 9 elements, where the
message objects are stored.

Syntax
#Include ADWL16.Inc

CAN_Msg[n] = value

or

value = CAN_Msg[n]

Parameters

Notes
The elements of the array CAN_Msg[] have the following functions:

Enter the data bytes to be transferred and their number into the field
CAN_Msg[], before transferring them with Transmit.

See also
Init_CAN, Read_Msg, Read_Msg_Con, Transmit

Valid for
L16-DIO1

Example
#Include ADWL16.Inc
REM Sends a 32 Bit FLOAT-value (here: Pi) as sequence of
REM 4 bytes in a message object

#Define pi 3.14159265
Dim i As Long

Init:
Init_CAN() 'Initialize CAN controller

REM Enable message object 6
REM for sending with the identifier 40 (11 bit)
En_Transmit(6,40,0)

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_FloatToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_Msg[4] = Par_1 And 0FFh 'assign LSB
For i = 1 To 3
CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And 0FFh

Next i
CAN_Msg[9] = 4 'message length in bytes

Event:
Transmit(6) 'Send the message object 6

n Element number in the field CAN_Msg (1…9). LONG

value Value (8 bit), which is to be written into or
read from the message object.

LONG

Element no. in CAN_Msg 1…8 9
Contents Message

object(s) =
databyte(s)

Number (0…8) of
allocated databytes

ADwin-light-16 , manual version 3.5, November 2013 113

CAN interface
CAN_MsgADwin

Receiving of a float value see example at Read_Msg.

CAN interface
En_Interrupt ADwin

114 ADwin-light-16 , manual version 3.5, November 2013

En_Interrupt En_Interrupt configures a specified message object to generate an exter-
nal event when a message arrives.

Syntax
#Include ADWL16.Inc

En_Interrupt(msg_no)

Parameters

Notes
- / -

See also
CAN_Msg, En_Receive, Get_CAN_Reg, Set_CAN_Reg

Valid for
L16-DIO1

Example
#Include ADWL16.Inc

Init:
Init_CAN() 'Initialization of the CAN

'controller
En_Receive(1,200,0) 'Initialize the message object 1

'to
'receive CAN messages with
'identifier 200

En_Interrupt(1) 'Enables the triggering of
'interrupts
'(ext. EVENT) when receiving the
'message object 1

msg_no Number (1…15) of the message object in the CAN
controller.

LONG

ADwin-light-16 , manual version 3.5, November 2013 115

CAN interface
En_ReceiveADwin

En_ReceiveEN_RECEIVE enables a specified message object to receive messages.

Syntax
#Include ADWL16.Inc

En_Receive(msg_no, id, id_extend)

Parameters

Notes
A message object can only receive messages from the CAN bus when
you have previously enabled it to receive with En_Receive.

The message object only receives messages with the identifier you
have specified.

See also
CAN_Msg, En_Transmit, Read_Msg, Read_Msg_Con

Valid for
L16-DIO1

Example
#Include ADWL16.Inc

Init:
Init_CAN() 'Initialization of the CAN

'controller
En_Receive(1,200,0) 'Initialize the message object 1

'to
'receive CAN messages with the
'identifier 200

msg_no Number (1…15) of the message object. LONG

id Identifier (0…211 or 0…229) of the messages,
which can be received in this message object.

LONG

id_extend Length of the identifer:
0: 11 bits.
1: 29 bits.

LONG

CAN interface
En_Transmit ADwin

116 ADwin-light-16 , manual version 3.5, November 2013

En_Transmit EN_TRANSMIT enables a specified message object to send messages.

Syntax
#Include ADWL16.Inc

En_Transmit(msg_no, id, id_extend)

Parameters

Notes
A message object can only send messages to the CAN bus when you
have it previously enabled to send with En_Transmit.

See also
CAN_Msg, En_Receive, Transmit

Valid for
L16-DIO1

Example
#Include ADWL16.Inc

Init:
Init_CAN() 'Initialization of the CAN

'controller
En_Transmit(6,40,0) 'Initialize the message object 6

'to
'send CAN messages with
'identifier 40

msg_no Number (1…14) of the message object. LONG

id Identifier which is sent with the messages of this
message object.

LONG

id_extend Length of the identifier:
0: 11 bits.
1: 29 bits.

LONG

ADwin-light-16 , manual version 3.5, November 2013 117

CAN interface
Get_CAN_RegADwin

Get_CAN_RegGET_CAN_REG reads the value of a specified register in the CAN controller.

Syntax
#Include ADWL16.Inc

ret_val = Get_CAN_Reg(regno)

Parameters

Notes

You will find the register list of the CAN controller in the Intel® AN82527
datasheet.

See also
Init_CAN, Set_CAN_Baudrate, Set_CAN_Reg

Valid for
L16-DIO1

Example
#Include ADWL16.Inc
Init:
Init_CAN() 'Initialization of the CAN

'controller
Par_1 = Get_CAN_Reg(0)'Read out the control register

regno Register number in the CAN controller (0…255). LONG

ret_val Contents of the register (transfer to the lower
8 bits).

LONG

CAN interface
Init_CAN ADwin

118 ADwin-light-16 , manual version 3.5, November 2013

Init_CAN INIT_CAN initializes the CAN controller.

Syntax
#Include ADWL16.Inc

Init_CAN()

Parameters
- / -

Notes
The instruction carries out the following steps:

• Reset (hardware reset of the CAN controller)
• All filters are set to "must match".
• Clockout register is set to 0 (= the external frequency is not divided).
• The register "Bus Configuration" is set to 0.
• The transfer rate for the CAN bus is set to 1 MBit/s.
• All message objects are disabled.

You have to execute this instruction before you access the CAN control-
ler with other instructions. We recommend you place this instruction in
the process section LowInit: or Init:.

See also
CAN_Msg, En_Interrupt, En_Receive, En_Transmit, Get_CAN_Reg,
Set_CAN_Baudrate, Set_CAN_Reg

Valid for
L16-DIO1

Example
#Include ADWL16.Inc

Init:
Init_CAN() 'Initialize the CAN controller

ADwin-light-16 , manual version 3.5, November 2013 119

CAN interface
Read_MsgADwin

Read_MsgREAD_MSG checks if new message has been received in a specified message
object.
If so, the message is saved in CAN_Msg and the identifier of the message is
returned.

Syntax
#Include ADWL16.Inc

ret_val = Read_Msg(msg_no)

Parameters

Notes
To receive a message, follow these steps:

• Enable the message object for receive with En_Receive.
• Check for a new message, and if, store the message in CAN_Msg

with Read_Msg.

You can read a received message only once.

See also
CAN_Msg, En_Interrupt, En_Receive, En_Transmit, Read_Msg_Con

Valid for
L16-DIO1

msg_no Number (1…15) of the message object. LONG

ret_val -1: No new message.
>0:New message; value = identifier of the mes-

sage.

LONG

CAN interface
Read_Msg ADwin

120 ADwin-light-16 , manual version 3.5, November 2013

Example
#Include ADWL16.Inc
REM If a new message with the correct identifier is received
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit. (Sending a
REM float value see example of Transmit).
Dim n As Long

Init:
Par_1 = 0
Init_CAN() 'Initialize the CAN controller
En_Receive(1,40,0) 'Initialize the message object 1

'to receive CAN messages with
'identifier 40

Event:
REM If the message is changed, read out the received data
REM from object 1 and transfer the identifier to parameter 9.
REM The data bytes are in the array CAN_Msg[].
Par_9 = Read_Msg(1)

If (Par_9 = 40) Then
REM New message for message object with the identifier 40
REM has arrived
Par_1 = CAN_Msg[1] 'Read out high-byte
For n = 2 To 4 'Combine with remaining 3 bytes

'to
 Par_1 = Shift_Left(Par_1,8) + CAN_Msg[n]'a 32-bit value
Next n
REM Convert the bit pattern in Par_1 to data type FLOAT and
REM assign to the variable FPar_1.
FPar_1 = Cast_LongToFloat(Par_1)

EndIf

Sending a float value see example at Transmit.

ADwin-light-16 , manual version 3.5, November 2013 121

CAN interface
Read_Msg_ConADwin

Read_Msg_ConRead_Msg_Con checks if a complete new message has been received in a
specified message object.
If so, the message is saved in CAN_Msg and the identifier of the message is
returned.

Syntax
#Include ADWL16.Inc

ret_val = Read_Msg_Con(msg_no)

Parameters

Notes
In contrary to Read_Msg, Read_Msg_Con makes sure the message is
consistent: If a new message arrives while reading an old message, the-
re is no mixture of old and new message.

To receive a message, follow these steps:
• Enable the message object for receive with En_Receive.
• Check for a new message, and if, store the message in CAN_Msg

with Read_Msg.

You can read a received message only once.

See also
CAN_Msg, En_Interrupt, En_Receive, En_Transmit, Read_Msg

Valid for
L16-DIO1

msg_no Number (1…15) of the message object. LONG

ret_val -1: no new message arrived.
>0:new message; ret_val = message identifier.

LONG

CAN interface
Read_Msg_Con ADwin

122 ADwin-light-16 , manual version 3.5, November 2013

Example
#Include ADWL16.Inc
REM If a new message with the correct identifier is received
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit.
REM Sending a float value see example of Transmit.
Dim n As Long

Init:
Par_1 = 0
Init_CAN() 'Initialize the CAN controller
En_Receive(1,40,0) 'Initialize the message object 1

'to receive CAN messages with
'identifier 40

Event:
REM If the message is changed, read out the received data
REM from object 1 and transfer the identifier to parameter 9.
REM The data bytes are in the array CAN_Msg[].
Par_9 = Read_Msg_Con(1)

If (Par_9 = 40) Then
REM New message for message object with the identifier 40
REM has arrived
Par_1 = CAN_Msg[1] 'Read out high-byte
For n = 2 To 4 'Combine with remaining 3 bytes

'to
 Par_1 = Shift_Left(Par_1,8) + CAN_Msg[n]'a 32-bit value
Next n
REM Convert the bit pattern in Par_1 to data type FLOAT and
REM assign to the variable FPar_1.
FPar_1 = Cast_LongToFloat(Par_1)

EndIf

ADwin-light-16 , manual version 3.5, November 2013 123

CAN interface
Set_CAN_BaudrateADwin

Set_CAN_
Baudrate

Set_CAN_Baudrate sets the Baud rate of the CAN controller.

Syntax
#Include ADWL16.Inc

ret_val = Set_CAN_Baudrate(rate)

Parameters

Notes
The available baud rates (bus frequencies) are given in the table "Baud
rates for CAN bus" (Annex, page A-16). Please use the table’s notation
exactly, i.e. non-integer baud rates with 4 decimal places; values with
different notation will be rejected as not allowed.

Set_CAN_Baudrate executes the following actions:
• Checks if the transferred Baud rate is allowed. If not then set the

return value to 1 and stop processing.
• Set the registers of the CAN controller for the Baud rate.
• Set sampling mode to 0: One sample per bit.
• Select the settings in such a way that the sample point is always

between 60% and 72% of the total bit length.
• Set the jump width for synchroniziation to 1.

In special cases it may be of interest to set a baud rate in a different way
than the instruction works. The hardware manual gives an explanation
how to do this.
The instruction should be called in the program sections LowInit: or
Init:, after Init_CAN, because otherwise the set Baud rate will be
overwritten by the default setting (1MBit/s).

See also
Get_CAN_Reg, Init_CAN, Set_CAN_Reg

Valid for
L16-DIO1

Example
#Include ADWL16.Inc
Dim status As Long

Init:
Init_CAN() 'Initialize the CAN controller
status = Set_CAN_Baudrate(125000)'Set the Baud rate to 125

'kBit/s

rate Baud rate in bits/second. FLOAT

ret_val 0: Baud rate is set.
1: Baud rate invalid.

LONG

CAN interface
Set_CAN_Reg ADwin

124 ADwin-light-16 , manual version 3.5, November 2013

Set_CAN_Reg SET_CAN_REG writes a value into a specified register of the CAN controller.

Syntax
#Include ADWL16.Inc

Set_CAN_Reg(regno, value)

Parameters

Notes

The register list of the CAN controller can be found in the Intel®
AN82527 datasheet.

See also
Get_CAN_Reg, Init_CAN, Set_CAN_Baudrate

Valid for
L16-DIO1

Example
#Include ADWL16.Inc

Init:
Init_CAN() 'Initialization of the CAN

'controller
Set_CAN_Reg(0,1) 'Set control register to the

'value 1

regno Register number in the CAN controller (0…255). LONG

value Value (8 bits), which is written into the register. LONG

ADwin-light-16 , manual version 3.5, November 2013 125

CAN interface
TransmitADwin

TransmitTRANSMIT sends the message in CAN_Msg via the specified message object.

Syntax
#Include ADWL16.Inc

Transmit(msg_no)

Parameters

Notes
To send a message, follow these steps:

• Enable the message object for sending with En_Transmit.
• Enter the message into the array CAN_Msg: data bytes and the

number of data bytes.
• Send the message with Trasnmit.

The CAN interface sends the message as soon as the message object
has received access rights to the CAN bus.

See also
CAN_Msg, En_Transmit, Init_CAN, Set_CAN_Baudrate

Valid for
L16-DIO1

Example
#Include ADWL16.Inc
#Define pi 3.14159265
Dim i As Long

Init:
Init_CAN() 'Initialize CAN controller

REM Enable message object 6
REM for sending with the identifier 40 (11 bit)
En_Transmit(6,40,0)

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_FloatToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_Msg[4] = Par_1 And 0FFh 'assign LSB
For i = 1 To 3
CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And 0FFh

Next i
CAN_Msg[9] = 4 'message length in bytes

Event:
Transmit(6) 'Send message object 6

Receiving of a float value see example at Read_Msg.

msg_no Number (1…14) of the message object. LONG

CAN interface
Transmit ADwin

126 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 127

SSI interfaceADwin
13.6 SSI interface
This section describes the following instructions:

– SSI_Mode (page 128)

– SSI_Read (page 129)

– SSI_Set_Bits (page 130)

– SSI_Set_Clock (page 131)

– SSI_Start (page 132)

– SSI_Status (page 133)

SSI interface
SSI_Mode ADwin

128 ADwin-light-16 , manual version 3.5, November 2013

SSI_Mode SSI_Mode sets the modes of all SSI decoders, either "single shot" (read once)
or "continuous" (read continuously).

Syntax
#Include ADWL16.Inc

SSI_Mode(pattern)

Parameters

Notes
If you select "continuous" mode, reading the encoder is started immedi-
ately. SSI_Start is not necessary then.

Using the "continuous" mode, some encoder types occasionally return
the wrong counter value 0 (zero) instead of the corrct counter value. This
error does not occur with the "single shot" mode.

See also
SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Start, SSI_Status

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Init:
SSI_Set_Clock(1,10) 'clock rate 1.0 MHz
SSI_Mode(1b) 'Set continuous-mode
SSI_Set_Bits(1,10) '10 encoder bits

Event:
Par_1 = SSI_Read(1) 'Read out position value

pattern Operation mode of the SSI decoders, indicated as
bit pattern. A bit is assigned to each of the decod-
ers (see table).
Bit = 0: "Single shot" mode, the encoder is read

once.
Bit = 1: "Continuous" mode, the encoder is read

continuously.

LONG

Bit no. 31:1 0
SSI decoder – 1

ADwin-light-16 , manual version 3.5, November 2013 129

SSI interface
SSI_ReadADwin

SSI_ReadSSI_Read returns the last saved counter value of a specified SSI counter.

Syntax
#Include ADWL16.Inc

ret_val = SSI_Read(dcdr_no)

Parameters

Notes
An encoder value is saved when the bits indicated by SSI_Set_Bits
are read.

See also
SSI_Mode, SSI_Set_Bits, SSI_Set_Clock, SSI_Start, SSI_Status

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc
Dim m, n, y As Long

Init:
SSI_Set_Clock(1,50) 'clock rate 200 kHz
SSI_Mode(1) 'Set continuous-mode)
SSI_Set_Bits(1,23) '23 encoder bits

Event:
Par_1 = SSI_Read(1) 'Read out position value

REM Change value from Gray-code into a binary value:
m = 0 'delete value of last conversion
y = 0 ' -"-

For n = 1 To 32 'Check all 32 possible bits
m = (Shift_Right(Par_1,(32 - n)) And 1) XOr m
y = (Shift_Left(m,(32 - n))) Or y

Next n

Rem The result of the Gray/binary conversion in Par_9
Par_9 = y

dcdr_no Number (1) of the SSI decoder whose counter
value is to be read.

LONG

ret_val Last counter value of the SSI counter (= absolute
value position of the encoder).

LONG

SSI interface
SSI_Set_Bits ADwin

130 ADwin-light-16 , manual version 3.5, November 2013

SSI_Set_Bits SSI_SET_BITS sets for an SSI counter the amount of bits which generate a
complete encoder value.
The number of bits should be equal to the resolution of the encoder.

Syntax
#Include ADWL16.Inc

SSI_Set_Bits(dcdr_no,bit_no)

Parameters

Notes
The resolution (amount of bits) of the SSI encoder should be similar to
the amount of bits which are transferred.

See also
SSI_Mode, SSI_Read, SSI_Set_Clock, SSI_Start, SSI_Status

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Init:
SSI_Set_Clock(1,10) 'clock rate 1.0 MHz
SSI_Mode(1b) 'Set continuous-mode
SSI_Set_Bits(1,10) '10 encoder bits

Event:
Par_1 = SSI_Read(1) 'Read out position value

dcdr_no Number (1) of the SSI decoder whose resolution
is to be set.

LONG

bit_no Amount of bits (1…32) of the bits which are to be
read for the encoder (corresponds to the encoder
resolution).

LONG

ADwin-light-16 , manual version 3.5, November 2013 131

SSI interface
SSI_Set_ClockADwin

SSI_Set_ClockSSI_SET_CLOCK sets the clock rate (approx. 40kHz to 1MHz) , with which the
encoder is clocked.

Syntax
#Include ADWL16.Inc

SSI_Set_Clock(dcdr_no,prescale)

Parameters

Notes
Scale factors < 10 are automatically corrected to the value 10; from val-
ues > 255 only the least significant 8 bits are used as scale factor.

The possible clock frequency depends on the length of the cable, cable
type, and the send and receive components of the encoder or decoder.
Basically the following rule applies: The higher the clock frequency the
shorter the cable length.

See also
SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Start, SSI_Status

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Init:
SSI_Set_Clock(1,10) 'clock rate 1.0 MHz
SSI_Mode(1b) 'Set continuous-mode
SSI_Set_Bits(1,10) '10 encoder bits

Event:
Par_1 = SSI_Read(1) 'Read out position value

'(encoder 2)

dcdr_no Number (1) of the SSI decoder whose clock rate is
to be set.

LONG

prescale scaling factor (10…255) for setting the clock rate
according to the equation:
Clock rate = 10MHz / prescale.

LONG

SSI interface
SSI_Start ADwin

132 ADwin-light-16 , manual version 3.5, November 2013

SSI_Start SSI_START starts reading of one or both SSI encoders (only in "single shot"
mode).

Syntax
#Include ADWL16.Inc

SSI_Start(dcdr_no)

Parameters

Notes
In "continuous" mode SSI_Start has no function, because the encod-
er values are nevertheless read out continuously.

An encoder value will be saved only when the amount of bits is read
which is set by SSI_Set_Bits.
A complete encoder value is always transferred, even if the operation
mode is changing meanwhile.

See also
SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Status

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Init:
SSI_Set_Clock(1,250) 'clock rate 40 kHz
SSI_Mode(0) 'Set single shot-mode
SSI_Set_Bits(1,23) '23 encoder bits

Event:
SSI_Start(1b) 'Read position value
Do
Until (SSI_Status(1) = 0)
Rem If position value is read completely, then …

Rem read out and display position value
Par_1 = SSI_Read(1)

dcdr_no Number (1) of SSI decoder which is to be started. LONG

ADwin-light-16 , manual version 3.5, November 2013 133

SSI interface
SSI_StatusADwin

SSI_StatusSSI_Status returns the current read-status for a specified decoder.

Syntax
#Include ADWL16.Inc

ret_val = SSI_Status(dcdr_no)

Parameters

Notes
Use the status query only in the SSI mode "single shot". In the mode
"continuous" querying the status is not useful.

See also
SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Start

Valid for
L16-DIO1, L16-DIO2

Example
#Include ADWL16.Inc

Init:
SSI_Set_Clock(1,250) 'clock rate 40 kHz
SSI_Mode(0) 'Set single shot-mode
SSI_Set_Bits(1,23) '23 encoder bits

Event:
SSI_Start(1b) 'Read position value
Do
Until (SSI_Status(1) = 0)
Rem If position value is read completely, then …

Rem read out and display position value
Par_1 = SSI_Read(1)

dcdr_no Number (1) of the SSI decoder whose status is to
be queried.

LONG

ret_val Read-status of the decoder:
0: Decoder is ready, that is a complete value has

been read.
1: Decoder is reading an encoder value.

LONG

SSI interface
SSI_Status ADwin

134 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 , manual version 3.5, November 2013 135

PWM OutputsADwin
13.7 PWM Outputs
This section describes instructions to access PWM outputs of ADwin-light-16
with PWM1 add-on:

– PWM_Activate (page 136)

– PWM_Enable (page 137)

– PWM_Get_Status (page 138)

– PWM_Init (page 139)

– PWM_Latch (page 141)

– PWM_Reset (page 142)

– PWM_Standby_Value (page 143)

– PWM_Write_Latch (page 144)

PWM Outputs
PWM_Activate ADwin

136 ADwin-light-16 , manual version 3.5, November 2013

PWM_Activate PWM_Activate activates pin 34 (DIGOUT-05) as PWM output or as digital
output.

Syntax
#Include ADWL16.inc

PWM_Activate(enable)

Parameters

Notes
After power-up pin 34 is configured as digital output.

See also
PWM_Enable, PWM_Get_Status, PWM_Init, PWM_Latch, PWM_Re-
set, PWM_Standby_Value, PWM_Write_Latch

Valid for
L16-PWM1

Example
see PWM_Init (page 139)

enable Status of pin 34 (DIGOUT-05):
0: activate pin as digital output.
1: activate pin as PWM output.

LONG

ADwin-light-16 , manual version 3.5, November 2013 137

PWM Outputs
PWM_EnableADwin

PWM_EnablePWM_Enable enables or disables the PWM output.

Syntax
#Include ADWL16.inc

PWM_Enable(enable)

Parameters

Notes
The time, when the PWM output is disabled–at once or after the next
end of period–depends on the setting which was done with PWM_Init
(parameter mode).

If the PWM output is disabled but activated, the output is set to the
standby level (see PWM_Standby_Value).

See also
PWM_Activate, PWM_Get_Status, PWM_Init, PWM_Latch, PWM_Re-
set, PWM_Standby_Value, PWM_Write_Latch

Valid for
L16-PWM1

Example
see PWM_Init (page 139)

enable Status of PWM output:
0: Disable PWM output.
1: Enable PWM output.

LONG

PWM Outputs
PWM_Get_Status ADwin

138 ADwin-light-16 , manual version 3.5, November 2013

PWM_Get_Status PWM_Get_Status returns the operation status of the PWM output.

Syntax
#Include ADWL16.inc

ret_val = PWM_Get_Status()

Parameters

Notes
- / -

See also
PWM_Activate, PWM_Enable, PWM_Init, PWM_Latch, PWM_Reset,
PWM_Standby_Value, PWM_Write_Latch

Valid for
L16-PWM1

Example
- / -

ret_val Status of PWM output.
0: PWM output has finished.
1: PWM output is running.

LONG

ADwin-light-16 , manual version 3.5, November 2013 139

PWM Outputs
PWM_InitADwin

PWM_InitPWM_Init sets the defaults for the PWM output.

Syntax
#Include ADWL16.inc

PWM_Init(pwm_output, startlevel, startvalue, mode,
 count)

Parameters

Notes
- / -

See also
PWM_Activate, PWM_Enable, PWM_Get_Status, PWM_Latch, PWM_
Reset, PWM_Standby_Value, PWM_Write_Latch

Valid for
L16-PWM1

pwm_
output

Number (1) of PWM output. LONG

startdela
y

Start delay in units of 25ns. LONG

startleve
l

Start level of PWM output:
0: TTL level low.
1: TTL level high.

LONG

mode Operating mode of PWM output as bit pattern (bits
0…2 only).
Bit 0: Moment to take over a new PW frequency:

Bit = 0: Take over at end of period.
Bit = 1: Take over immediately.

Bit 1: Number of pulses:
Bit = 0: infinite number of periods.
Bit = 1: number of periods is count.

Bit 2: Moment to stop after stop instruction:
Bit = 0: Stop at end of period.
Bit = 1: Stop immediately.

LONG

count Number of periods (1…32/68), which are pro-
cessed during an output cycle.
Only relevant, if mode, bit 1 = 1.

LONG

PWM Outputs
PWM_Init ADwin

140 ADwin-light-16 , manual version 3.5, November 2013

Example
#Include ADWL16.inc
Rem You can set frequency and duty cycle online with the
Rem global variables FPar_1 and FPar_2:
#Define freq1 FPar_1 'frequency
#Define pw1 FPar_2 'duty cycle

Init:
PWM_Activate(1) 'enable pin 34 as PWM output
freq1 = 1000 '1000 Hz
pw1 = 50 '50 %
PWM_Reset(01b) 'stop PWM channel
PWM_Init(1,0,0,0,0) 'initialize PWM settings

PWM_Write_Latch(1,pw1,freq1)'set frequency and duty cycle
PWM_Latch(1) 'enable output of PWM signal
PWM_Enable(1) 'start output

Event:
PWM_Write_Latch(1,pw2,freq2)'set new frequency and duty cycle
PWM_Latch(1) 'set frequency and duty cycle

Finish:
PWM_Activate(0) 'reset pin 34 as digital output

ADwin-light-16 , manual version 3.5, November 2013 141

PWM Outputs
PWM_LatchADwin

PWM_LatchPWM_Latch enables frequency and duty cycle of the PWM output to be output.

Syntax
#Include ADWL16.inc

PWM_Latch(enable)

Parameters

Notes
PWM_Write_Latch writres frequency and duty cycle into the latch re-
gister. Only when PWM_Latch is processed the latch values are started
to be output.

The time, when the output of the new values starts–at once or after the
next end of period–depends on the setting which was done with PWM_
Init (parameter mode).

See also
PWM_Activate, PWM_Enable, PWM_Get_Status, PWM_Init, PWM_
Reset, PWM_Standby_Value, PWM_Write_Latch

Valid for
L16-PWM1

Example
see PWM_Init (page 139)

pattern Output status of the PWM output:
0: No influence.
1: latch = enable for output.

LONG

PWM Outputs
PWM_Reset ADwin

142 ADwin-light-16 , manual version 3.5, November 2013

PWM_Reset PWM_Reset stops the output of the PWM output immediately.

Syntax
#Include ADWL16.inc

PWM_Reset(pattern)

Parameters

Notes
The output will be stopped immediately even if PWM_Init was set a dif-
ferent stop mode.

See also
PWM_Activate, PWM_Enable, PWM_Get_Status, PWM_Init, PWM_
Latch, PWM_Standby_Value, PWM_Write_Latch

Valid for
L16-PWM1

Example
see PWM_Init (page 139)

pattern Status of the PWM output:
0: No influence
1: Stop PWM output immediately.

LONG

ADwin-light-16 , manual version 3.5, November 2013 143

PWM Outputs
PWM_Standby_ValueADwin
PWM_Standby_
Value

PWM_Standby_Value sets the standby TTL level for the PWM output.

Syntax
#Include ADWL16.inc

PWM_Standby_Value(level)

Parameters

Notes
If the PWM output is disabled with PWM_Enable, the output is set to the
standby level. The standby level will also be set after the PWM output
has stopped.
After power-up the output is set to TTL-level low.

See also
PWM_Activate, PWM_Enable, PWM_Get_Status, PWM_Init, PWM_
Latch, PWM_Reset, PWM_Write_Latch

Valid for
L16-PWM1

Example
- / -

level Standby TTL level of the PWM output:
0: TTL-level low (default)
1: TTL-level high

LONG

PWM Outputs
PWM_Write_Latch ADwin

144 ADwin-light-16 , manual version 3.5, November 2013

PWM_Write_Latch PWM_Write_Latch writes duty cycle and frequency into the latch register.

Syntax
#Include ADWL16.inc

PWM_Write_Latch(pwm_output, dutycycle, frequency)

Parameters

Notes
PWM_Write_Latch writes frequency and duty cycle into the latch regi-
ster only. The values are enabled for PWM output with PWM_Latch only.

The value of dutycycle depends on the setting of the parameter
startvalue from the instruction PWM_Init:

• startvalue = 1: Set dutycycle to the value of the duty cycle.
• startvalue = 0: Set dutycycle to the "inverse duty cycle":

dutycycle = 100% - duty cycle

The highest output frequency where the duty cycle can be still defined
in 1%-steps, is about 400kHz.

See also
PWM_Activate, PWM_Enable, PWM_Get_Status, PWM_Init, PWM_
Latch, PWM_Reset, PWM_Standby_Value

Valid for
L16-PWM1

Example
see PWM_Init (page 139)

pwm_
output

Number (1) of PWM output. LONG

dutycycle Duty cycle / inverse duty cycle in percent between
0.0 and 100.0 (do not use 0.0 or 100.0).

FLOAT

frequency Frequency in Hertz: 0.05Hz …20MHz. FLOAT

ADwin-light-16 , manual version 3.5, November 2013 145

PWM Outputs
PWM_Write_LatchADwin

SPI Interface ADwin

146 ADwin-light-16 , manual version 3.5, November 2013

13.8 SPI Interface
This section describes instructions to access the SPI interface of
ADwin-light-16 with PWM1 add-on:

– SPI_Config (page 147)

– SPI_Enable (page 149)

– SPI_Get_MISO (page 150)

– SPI_Set_MOSI (page 151)

– SPI_Start (page 152)

– SPI_Static_MISO (page 153)

– SPI_Status (page 155)

– SPI_Wait (page 156)

ADwin-light-16 , manual version 3.5, November 2013 147

SPI Interface
SPI_ConfigADwin

SPI_ConfigSPI_Config configures the SPI master.

Syntax
#Include ADWL16.inc

SPI_Config(data_order, mode, bits, clock)

Parameters

Notes
We recommend to disable all slaves via Slave Select lines before
configuring the SPI master. If you configure the SPI master spikes can
occur which are misinterpreted by the connected slaves. This fault will
confuse the data transfer.

You find more information about the SPI bus in chapter 10.2 "SPI Inter-
face" on page 55.

See also
SPI_Enable, SPI_Get_MISO, SPI_Set_MOSI, SPI_Start, SPI_Static_
MISO, SPI_Status, SPI_Wait

Valid for
L16-PWM1

data_
order

Order how data is being sent:
0: send MSB first.
1: send LSB first.

LONG

mode Operation mode of the SPI Master:
0: CPOL=0, CPHA=0
1: CPOL=0, CPHA=1
2: CPOL=1, CPHA=0
3: CPOL=1, CPHA=1

LONG

bits Number (1…32) of bits transferred in a SPI mes-
sage.

LONG

clock Setting (1…7) of the clock rate:
1: 5000kHz
2: 2500kHz
3: 1250kHz
4: 620kHz
5: 312.5kHz
6: 156.25kHz
7: 78.125kHz

LONG

SPI Interface
SPI_Config ADwin

148 ADwin-light-16 , manual version 3.5, November 2013

Example
#Include ADwL16.inc

Rem SPI settings
#Define bits 8 'number of data bits
#Define prescale 7 'clock divider: 78.125 kHz
#Define data_order 0 '0 = MSB first
#Define mode 3 'CPOL = 1, CPHA = 1

Init:
 SPI_Enable(1) 'enable ADwin I/O Connector pins
 SPI_Config(data_order, mode, bits, prescale)
 Par_1 = 10 'first data value

Event:
SPI_Set_MOSI(Par_1) 'set data value to be sent

Rem To select a slave you have to send the signal "Slave
Rem select" to the SPI slave. Connect a free DIO output to
Rem the slave SPI input and set the required TTL output level
Rem with the appropriate standard DIO instruction.

Rem Start slave select via TTL low on pin DIGOUT-1
Clear_Digout(0)
SPI_Start() 'start data transfer
SPI_Wait() 'wait until end of data transfer
Set_Digout(0) 'end slave select

Par_2 = SPI_Get_MISO() 'read received data value

ADwin-light-16 , manual version 3.5, November 2013 149

SPI Interface
SPI_EnableADwin

SPI_EnableSPI_Enable switches pins as SPI signals CLK, MISO and MOSI or as digital
outputs.

Syntax
#Include ADWL16.inc

SPI_Enable(enable)

Parameters

Notes
Pin assignments are found on page 55chapter 10.2 "SPI Interface".

Please note: If you switch pins on the DSub socket Digital I/O as SPI
signals, the pins DIO-24…DIO-31 are automatically configured as out-
puts and the pins DIO16…DIO-23 as inputs. If you switch the pins as
digital outputs afterwards, the previous configuration done with Conf_
DIO_E is valid again.

In addition to the pins described above, you require a separate Slave
Select line for each addressed SPI slave to enable or disable data
transfer. If you use the remaining digital outputs, set the required TTL
level with the appropriate instructions for digital outputs like Digout_
Clear or Digout_Set (see chapter 13.3 on page 77).

See also
SPI_Config, SPI_Get_MISO, SPI_Set_MOSI, SPI_Start, SPI_Static_
MISO, SPI_Status, SPI_Wait, Conf_DIO_E, Clear_Digout, Set_Digout

Valid for
L16-PWM1

Example
see SPI_Config (page 147)

enable Pin status on DSub sockets:
0: all pins as digital outputs (default).
1: pins 13, 32 and 33 at ADwin I/O-Connector

socket as SPI signals.
3: pins 16, 34 and 35 at Digital I/O socket as

SPI signals.

LONG

SPI Interface
SPI_Get_MISO ADwin

150 ADwin-light-16 , manual version 3.5, November 2013

SPI_Get_MISO SPI_Get_MISO reads (an already received) SPI message from the input regi-
ster.

Syntax
#Include ADWL16.inc

ret_val = SPI_Get_MISO()

Parameters

Notes
You set the number of bits of the SPI message with the parameter bits
of the instruction SPI_Config.

You can only read the SPI message when the data transfer has finished;
check the state of data transfer with SPI_Wait or SPI_Status.

See also
SPI_Config, SPI_Enable, SPI_Set_MOSI, SPI_Start, SPI_Static_MI-
SO, SPI_Status, SPI_Wait

Valid for
L16-PWM1

Example
see SPI_Config (page 147)

ret_val Data value which was sent from the addressed
SPI slave.

LONG

ADwin-light-16 , manual version 3.5, November 2013 151

SPI Interface
SPI_Set_MOSIADwin

SPI_Set_MOSISPI_Set_MOSI provides data to be sent to a selected SPI slave.

Syntax
#Include ADWL16.inc

SPI_Set_MOSI(value)

Parameters

Notes
Using SPI_Set_MOSI, the SPI message is only prepared to be sent.
You start the data transfer with the instruction SPI_Start.

You set the number of bits of the SPI message with the parameter bits
of the instruction SPI_Config.

See also
SPI_Config, SPI_Enable, SPI_Get_MISO, SPI_Start, SPI_Static_MI-
SO, SPI_Status, SPI_Wait

Valid for
L16-PWM1

Example
see SPI_Config (page 147)

value Data value to be sent to a selected SPI slave. LONG

SPI Interface
SPI_Start ADwin

152 ADwin-light-16 , manual version 3.5, November 2013

SPI_Start SPI_Start starts the data transfer via the SPI bus.

Syntax
#Include ADWL16.inc

SPI_Start()

Parameters
- / -

Notes
The data transfer runs in both directions: SPI_Start sends the SPI
message which has previously been provided with SPI_Set_MOSI.
The SPI slave normally answers within the same data transfer; you read
the answer with SPI_Get_MOSI.

You can query the end of data transfer with SPI_Wait or SPI_Status.

See also
SPI_Config, SPI_Enable, SPI_Get_MISO, SPI_Set_MOSI, SPI_Static_
MISO, SPI_Status, SPI_Wait

Valid for
L16-PWM1

Example
see SPI_Config (page 147)

ADwin-light-16 , manual version 3.5, November 2013 153

SPI Interface
SPI_Static_MISOADwin

SPI_Static_MISOSPI_Static_MISO reads the current TTL level of the data line of the SPI bus.

Syntax
#Include ADWL16.inc

ret_val = SPI_Static_MISO()

Parameters

Notes
Some SPI slaves use the data line not only for data transfer but also to
send a signal to the SPI master. In this case, you can read the TTL level
of the data line with SPI_Static_MISO and react according to the SPI
slave.

See also
SPI_Config, SPI_Enable, SPI_Get_MISO, SPI_Set_MOSI, SPI_Start,
SPI_Status, SPI_Wait

Valid for
L16-PWM1

ret_val TTL level of the data line:
0: TTL level low.
1: TTL level high.

LONG

SPI Interface
SPI_Static_MISO ADwin

154 ADwin-light-16 , manual version 3.5, November 2013

Example
#Include ADwL16.inc
Rem The program communicates with an SPI slave to make it
Rem convert an analog value and put the converted value on
Rem the SPI bus.

Rem SPI settings
#Define data_order 0 'MSB first
#Define mode 0 'CPOL = 0, CPHA = 0
#Define bits 8 'number of data bits
#Define clock 3 'clock divider: 1250 kHz

Dim state As Long
Dim value As Long

Init:
Rem Disable slave select via TTL high on pin DIGOUT-1
Set_Digout(0)
SPI_Enable(1) 'enable ADwin I/O Connector pins
SPI_Config(data_order, mode, bits, clock)
state = 0 'state: idle

Event:
If (state = 0) then 'send command „start conversion“
Rem Set output value 11 to make the SPI slave start a
Rem conversion with the slave’s ADC.
SPI_Set_MOSI(11)
Clear_Digout(0) 'start Slave Select
SPI_Start(1) 'send command
state = 1 'state: start conversion

EndIf

If (state = 1) Then 'check if command is transferred
value = SPI_Status()
If (value = 0) Then state = 2 'state: slave runs conversion

EndIf

If (state = 2) Then 'check if slave is ready
Rem The slave sets the data line TTL high if the conversion
Rem is completed.
value = SPI_Static_MISO()
If (value = 1) Then state = 3 'state: conversion completed

EndIf

If (state = 3) Then'send command „transfer ADC value“
Rem Set output value 12 to make the SPI slave put the
Rem converted value on the bus.
SPI_Set_MOSI(12)
SPI_Start(1) 'send command and receive value
state = 4 'state: transfer ADC value

EndIf

If (state = 4) Then 'check if command is transferred
value = SPI_Status()
If (value = 0) Then state = 5 'state: ADC value is ready

EndIf

If (state = 5) Then
Set_Digout(0) 'end Slave Select
Par_2 = SPI_Get_MISO() 'read ADC value
End

EndIf

ADwin-light-16 , manual version 3.5, November 2013 155

SPI Interface
SPI_StatusADwin

SPI_StatusSPI_Status returns the status of the current SPI data transfer.

Syntax
#Include ADWL16.inc

ret_val = SPI_Status()

Parameters

Notes
You can use SPI_Status as an alternative to SPI_Wait to detect the
end of data transfer.

See also
SPI_Config, SPI_Enable, SPI_Get_MISO, SPI_Set_MOSI, SPI_Start,
SPI_Static_MISO, SPI_Wait

Valid for
L16-PWM1

Example
- / -

ret_val Status of SPI data transfer:
0: Data transfer is still running.
1: Data transfer is completed.

LONG

SPI Interface
SPI_Wait ADwin

156 ADwin-light-16 , manual version 3.5, November 2013

SPI_Wait SPI_Wait waits until the end of an SPI data transfer.

Syntax
#Include ADWL16.inc

SPI_Wait()

Parameters
- / -

Notes
- / -

See also
SPI_Config, SPI_Enable, SPI_Get_MISO, SPI_Set_MOSI, SPI_Start,
SPI_Static_MISO, SPI_Status

Valid for
L16-PWM1

Example
see SPI_Config (page 147)

ADwin-light-16 , manual version 3.5, November 2013 A-1

AnnexADwin
Annex
A.1 Technical Data

General Data / Limit Values
Symbol Conditions min. typ. max. Unit

Supply Voltage
voltage Ub L16-PCI, -EURO 4.75 5 5.25 V

L16-EXT 10 12 36
Supply Voltage with USB
operating current
L16, L16-CO1 Iidle

at Ub, typ.

L16-PCI, -EURO 0.75 0.9 1.5 A
L16-EXT 0.35 0.5 0.7

L16-DIO1, -DIO2, -DIO3 L16-PCI, -EURO 0.85 1.0 1.6
L16-EXT 0.55 0.7 1.0

inrush current
L16, L16-CO1 Ipower-on

bei Ub, typ.

L16-PCI, -EURO 6 A
L16-EXT 3

L16-DIO1, -DIO2, -DIO3 L16-PCI, -EURO 7
L16-EXT 3

Supply Voltage with Ethernet
operating current
L16, L16-CO1 Iidle

bei Ub, typ.

L16-PCI, -EURO 1.0 1.2 1.8 A
L16-EXT 0.55 0.7 0.9

L16-DIO1, -DIO2, -DIO3 L16-PCI, -EURO 1.15 1.3 1.9
L16-EXT 0.55 0.7 1.0

inrush current
L16, L16-CO1 Ipower-on

bei Ub, typ.

L16-PCI, -EURO 6.4 A
L16-EXT 3.3

L16-DIO1, -DIO2, -DIO3 L16-PCI, -EURO 7.5
L16-EXT 3.3

Operation
temperature Tenvironment L16-PCI, -EURO +5 +50 °C

Tchassis L16-EXT +5 +55
relative humidity Hrel no condensation 0 80 %
Storage
temperature T -20 +70 °C

Annex ADwin

A-2 ADwin-light-16 , manual version 3.5, November 2013

Dimensions
width x height x depth w x h x d L16-PCI-USB 21.5 x 121.0 x 172.5 mm

L16-EURO-USB a 5 TE (1") x 3 HE (5") x 187
L16-EURO-ENET a 10 TE (2") x 3 HE (5") x 187
L16-EXT-USB 226 x 109 x 44
L16-EXT-ENET 226 x 109 x 74
+ CO1 add-on see basic version
+ DIO1/DIO2 add-on L16-EURO a: width +10 TE

L16-EXT: height +30
+ DIO3 add-on L16-EURO a: width +5 TE

L16-EXT: height +16
Net Weight
weight mNetto L16-PCI-USB 135 g

L16-EURO-USB 165
L16-EURO-ENET 275
L16-EXT-USB 1.100
L16-EXT-ENET 1.400
+ CO1 add-on see basic version
+ DIO1/DIO2 add-on +140
+ DIO3 add-on +80

Connectors
DSub-connectors Metric ISO thread; UNC thread available as ordering option only.
Mounting
standard L16-PCI: installation in the PC

L16-EURO: installation in the 19"-enclosure
L16-EXT: desktop unit

optional DNI rail mounting and wall monting for L16-EXT
a Conversion for L16-EURO: 5 TE = 25.4mm = 1 inch; 10 TE = 50.8mm = 2 inch; 3 HE = 133.35mm

Digital Inputs/Outputs
Parameters Symbol Conditions min. typ. max. Unit
I/O-lines
line DIGIN05:00

DIGOUT05:00
6 inputs and 6 outputs (TTL- / 5V-CMOS-level)

EVENT 1 ext. trigger input (positive TTL-logic)
Circuitry see "Circuitry of digital Inputs/Outputs", TTL inputs / TTL outputs, page A-6
Counters
Number and function 2 incremental counters.
Counter / latch res. 32 Bit
max. counter frequency fCNT 10 MHz

EVENT input
Edge recognition, pos. VT+ (Low) VCC = 5V 1.65 1.9 2.15 V
Edge recognition, neg. VT- (High) VCC = 5V 0.75 1.0 1.25
Switching hysteresis VT+ - VT- 0.4 0.9

General Data / Limit Values
Symbol Conditions min. typ. max. Unit

ADwin-light-16 , manual version 3.5, November 2013 A-3

AnnexADwin

input current IIH VI = 2.7V 20 µA
IIL VI = 0.4V -50

Analog Inputs/Outputs
Parameters Symbol Conditions min. typ. max. Unit
Inputs
number 8, differential via multiplexer
input resistance Ri 323.4 330 336.6 kΩ

overvoltage Uin max. ON & OFF ±35 V
MUX settling time tMUX 2 LSB 16 Bit 6.5 a µs
*at an internal resistance of thevoltage source of less than 10 Ω

ADC 16-Bit
conversion time tconv Rev. A 10 µs

Rev. B b 2
measurement range Uin -10 +9.999695 V
diff. common mode
voltage

±2.0 V

integral non-linearity INL ±1 ±3 LSB
differential non-linearity DNL ±0.25 ±0.5
offset drift c ±2 ppm/°C

error adjustable
gain drift c ±20 ppm/°C

error adjustable
DAC 16-Bit
number 2
output voltage Uout -10 +9.999695 V
settling time tsettle 2V step 3 µs

FSR (20V) A 10
maximum current ±5 mA
integral non-linearity INL ±2 LSB
differential non-linearity DNL ±1
offset error adjustable
gain error adjustable
a FSR = Full Scale Range
b Software instructions use conversion time 10µs unless faster conversion ist enabled.
c Refers to total voltage range (FSR)

Digital Inputs/Outputs
Parameters Symbol Conditions min. typ. max. Unit

Annex ADwin

A-4 ADwin-light-16 , manual version 3.5, November 2013

Processor
Parameters Symbol Conditions min. typ. max. Unit
type ADSP21062 (SHARC™)
manufacturer Analog Devices
clock frequency fCLK 40 MHz
register width 32 Bit
internal memory SRAM for the program 128 kByte

for data 128
external memory SDRAM Rev. A 8 MByte

Rev. B 16

CO1 Add-on
Parameters Symbol Conditions min. typ. max. Unit
Counters
Number and function 1 up/down counter with four edge evaluation for connection of incremental encod-

ers.
The incremental counters of the basic version are replaced.

Counter inputs 2 inputs (A, B), alternatively available as digital inputs
Counter and latch reso-
lution

32 Bit

DIO1 Add-On
Parameters Symbol Conditions min. typ. max. Unit
Reference crystal oscillator
reference frequency fref 20 MHz
prescaler by 4 fref/4 5
accuracy and drift 100 ppm
Counters
Number and function 2 up/down counters for impulse, period duration and duty cycle measurements as

well as a four edge evaluation for connection of incremental encoders.

The incremental counters of the basic version are replaced.
Counter inputs 3 differental inputs (A/CLK, B/DIR, CLR/LATCH) for each counter; counter pro-

grammable with differential or single ended inputs.
Counter and latch resolu-
tion

32 Bit

count frequency fCLK input CLK 20 MHz
input A/B 5

Digital Inputs/Outputs
number DIO31:00 32 (programmable in groups of 8 as inputs or outputs)

EVENT ext. trigger input (pos. TTL-logic)
Circuitry see "Circuitry of digital Inputs/Outputs", TTL inputs / TTL outputs, page A-6
Interfaces
CAN CAN High speed, 1 interface
SSI SSI decoder (since Rev. B), 1 interface

ADwin-light-16 , manual version 3.5, November 2013 A-5

AnnexADwin
DIO2 Add-On
Parameters Symbol Conditions min. typ. max. Unit
Reference crystal oscillator
reference frequency fref 20 MHz
prescaler by 4 fref/4 5
accuracy and drift 100 ppm
Counters
Number and function 2 up/down counters for impulse, period duration and duty cycle measurements as

well as a four edge evaluation for connection of incremental encoders.

The incremental counters of the basic version are replaced.
Counter inputs 3 differental inputs (A/CLK, B/DIR, CLR/LATCH) for each counter; counter pro-

grammable with differential or single ended inputs.
Counter and latch resolu-
tion

32 Bit

count frequency fCLK input CLK 20 MHz
input A/B 5

Digital Inputs/Outputs
number DIO31:00 32 (programmable in groups of 8 as inputs or outputs)

EVENT ext. trigger input (pos. TTL-logic)
Circuitry see "Circuitry of digital Inputs/Outputs", TTL inputs / TTL outputs
Interfaces
SSI SSI decoder (since Rev. B), 1 interface

DIO3 Add-On
Parameters Symbol Conditions min. typ. max. Unit
Digital Inputs/Outputs
number DIO31:00 32 (programmable in groups of 8 as inputs or outputs)

EVENT ext. trigger input (pos. TTL-logic)
Circuitry see "Circuitry of digital Inputs/Outputs", TTL inputs / TTL outputs

Annex ADwin

A-6 ADwin-light-16 , manual version 3.5, November 2013

Circuitry of digital Inputs/Outputs
TTL Inputs*
max. input voltage TTL level -0.5 +5.5 V
logic-input voltage VIH (High) VCC = 5V 2

VIL (Low) VCC = 5V 0.8
logic-input current II VCC = 5V ±0.1 ±1000 nA
differential inputs
Differential input
threshold voltage

VTH -10V ≤ VCM ≤
13,2V

-200 +200 mV

Input hysteresis ΔVTH -10V ≤ VCM ≤
13,2V

40 mV

Common-mode range VCM -10 +13.2 V

Differential slew rate 0.33 V/µs
Allowed differential input
voltage

each input ±3.9 V

TTL outputs*
logic-output voltage VOH (High) IOH= -6mA 3.84 4.3 V

VOL (Low) IOL= +6mA 0.17 0.33
logic-output current IO each DIO line ±35 mA

ITOTAL each DIO group (8)
via VCC / GND

±70

* see also data sheet SN74 HCT 245 from Texas Instruments

ADwin-light-16 , manual version 3.5, November 2013 A-7

AnnexADwin
A.2 Hardware Addresses - General Overview
Address
[HEX] Function Bit No. Comments Register available

in the module

31...16 15...6 5 4 3 2 1 0 L16 L16 +
CO1

L16 +
DIO1

20 40 00 00 set multiplexer to input channel (ADC
01... ADC 15) - - - - - n n n "nnn" binary = 0...7 decimal,

selected channel = nnn*2 + 1 x x x

20 40 00 10
start conversion: ADC #1 - - - - - - - s s = 0 : start conversion

s = 1 : no effect x x xstart conversion: all DACs synchro-
nously - - - - - s - -

20 40 00 20 conversion status (EOC)
ADC #1 - - - - - - - e e = 0 : end of conversion

e = 1 : conversion is running x x x

20 40 00 30 read out register: ADC #1 - x x x x x x x x : result of conversion x x x
20 40 00 50 only write into register: DAC #1 - x x x x x x x x : digital value to be converted x x x20 40 00 60 only write into register: DAC #2 - x x x x x x x

20 40 00 B0 input register
DIGIN-05:00 - - x x x x x x x : read digital value x x x

20 40 00 C0 output register
DIGOUT-05:00 - - x x x x x x x : digital value to be output x x x

20 40 00 C4 set DIGOUT bits - - x x x x x x x = 0 : no effect
x = 1 : set bit x x x

20 40 00 C8 clear DIGOUT bits - - x x x x x x x = 0 : no effect
x = 1 : clear bit x x x

20 40 01 00 read out register and start conver-
sion: ADC #1 - x x x x x x x x : digital value to be converted x x x

20 40 02 00 write into register and start conver-
sion immediately: DAC #1 - x x x x x x x x : digital value to be converted x x x

20 40 02 04 contents of Latch A, counter #1 x x x x x x x x x : contents of latch register x x x

20 40 02 08 contents of Latch B, counter #1
(DIO1 only) x x x x x x x x x :contents of latch register - - x

20 40 02 10 write into register and start conver-
sion immediately: DAC #2 - x x x x x x x x : digital value to be converted x x x

20 40 02 14 contents of Latch A, counter #2 x x x x x x x x x : contents of latch register x - x
20 40 02 18 contents of Latch B, counter #2 x x x x x x x x x : contents of latch register - - x

20 40 03 00 enable/disable counter:
CNT_ENABLE() - - - - - - x x x = 0 : disable counter

x = 1 : enable counter x Bit 0
only x

20 40 03 10 clear counter: CNT_CLEAR() * - - - - - - x x x = 0 : no effect
x = 1 : clear counter x Bit 0

only x

20 40 03 20 latch counter: CNT_LATCH() * - - - - - - x x x = 0 : no effect
x = 1 : latch counter x Bit 0

only x

20 40 03 30 counter inputs CLR or LATCH - - - - - - x x x = 0 : CLR input
x = 1 : LATCH input - - x

20 40 03 40 impulse/event counter or pulse
width/period duration measurement - - - - - - x x

x = 0 :external clock input
x = 1 : internal reference clock
(20MHz / 5MHz)

- - x

20 40 03 50
4 edge evaluation/ CLK+DIR
or
20MHz / 5MHz reference clock

- - - - - - x x

CNT_MODE=0:
x=0: 4 edge evaluation;
x=1: CLK+DIR - - x
CNT_MODE=1:
x=0: 20MHz;
x=1: 5MHz

20 40 04 54 bits DIO-15:00 - x x x x x x x x = 0: clear output
x = 1: set output - - x

20 40 04 64 bits DIO-31:16 - x x x x x x x x = 0: clear output
x = 1: set output - - x

20 40 04 74 set bits DIO-15:00 ** - x x x x x x x x = 0: no effect
x = 1: set output - - x

20 40 04 84 set bits DIO-31:16 ** - x x x x x x x x = 0: no effect
x = 1: set output - - x

20 40 04 94 clear bits DIO-15:00 ** - x x x x x x x x = 0: no effect
x = 1: clear output - - x

20 40 04 A4 clear bits DIO-31:16 ** - x x x x x x x x = 0: no effect
x = 1: clear output - - x

20 40 04 6C

configure inputs/outputs
CONF_DIO()
Bit 0: DIO 07:00; Bit 1: DIO 15:08
Bit 2: DIO 23:16; Bit 3: DIO 31:24

- - - - x x x x x = 0: group as input
x = 1: group as output - - x

* after execution the register is automatically reset
** function without any effect at inputs

Annex ADwin

A-8 ADwin-light-16 , manual version 3.5, November 2013

A.3 Hardware-Revisions
The revision of a dvice is marked on the casing. The differences of the revision status’ are shown below:

A.4 RoHS Declaration of Conformity
The directive 2002/95/EG of the European Union on the restriction of the use of certain hazardous substances
in electrical und electronic equipment (RoHS directive) has become operative as from 1st July, 2006.

The following substances are involved:

– Lead (Pb)

– Cadmium (Cd)

– Hexavalent chromium (Cr VI)

– Polybrominated biphenyls (PBB)

– Polybrominated diphenyl ethers (PBDE)

– Mercury (Hg)

The product line ADwin-light-16 complies with the requirements of the RoHS directive in all delivered variants
since revision B1.

Revision First
release

Changes to previous revision status

A 1998 First release.
B1 Mar. 2006 New layout, but compatible to rev. A.

External memory extended to 16MiB.

Faster A/D conversion available via instruction L16_MODE.

Additional sequence control for conversion of analog inputs.

Additional SSI interface for DIO1-add-on, new add-ons DIO2 and DIO3.
B2 Aug. 2006 New interface for LS bus

ADwin-light-16 , manual version 3.5, November 2013 A-9

AnnexADwin
A.5 Overview Connectors / Enclosures

Basic version and add-on CO1 up to Rev. B1

Basic version and add-on CO1 since Rev. B2

L16-EXT: Front side

L16-EXT: Back side
L16-PCI L16-EURO

L16-EXT: Front side

L16-EXT: Back side
L16-PCI L16-EURO

AD
wi

n-
I/O

-C
ON

NE
CT

OR

ADwin-L16

USB

USB ADwin I/O CONNECTOR

10-18VDC
ONPOWERGND

LS
-B

us

AD
wi

n-
I/O

-C
ON

NE
CT

OR

ADwin-L16

USB

LS
-B

US

ADwin-L16

USB ADwin I/O CONNECTOR

10-36VDC

ON

POWER

GND

LS-BUS

Annex ADwin

A-10 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 with DIO1 add-on up to Rev. B1

L16-DIO1-PCI L16-DIO1-EURO

L16-DIO1-EXT: Front side L16-DIO1-EXT: Back side

ADwin I/O-
CONNECTOR

DIGITAL I/O

COUNTER

CAN

AD
wi

n
 I/O

-C
ON

NE
CT

OR

ADwin-L16 + EXPANSION-BOARD

USB

DI
GI

TA
L

I/O

CO
UN

TE
R

CA
N

ADwin I/O-CONNECTOR

DIGITAL I/O

COUNTER CAN

USB
10-18VDC

ONPOWERGND

ADwin-light-16 , manual version 3.5, November 2013 A-11

AnnexADwin
ADwin-light-16 with DIO1 add-on since Rev. B2

L16-DIO1-PCI L16-DIO1-EURO

L16-DIO1-EXT: Front side L16-DIO1-EXT: Back side

LS
-B

us

ADwin I/O-
CONNECTOR

DIGITAL I/O

COUNTER

CAN

AD
wi

n
 I/O

-C
ON

NE
CT

OR

ADwin-L16 + EXPANSION-BOARD

USB

DI
GI

TA
L

I/O

CO
UN

TE
R

CA
N

LS
-B

US

ADwin-L16

ADwin I/O-CONNECTOR

DIGITAL I/O

COUNTER CAN

USB ON

POWER 10-36VDC

GND
LS-BUS

Annex ADwin

A-12 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 with DIO2 add-on, Rev. B1

L16-DIO2-PCI L16-DIO2-EURO

L16-DIO2-EXT: Front side L16-DIO2-EXT: Back side

ADwin I/O-
CONNECTOR

DIGITAL I/O

COUNTER

AD
wi

n
 I/O

-C
ON

NE
CT

OR

ADwin-L16 + EXPANSION-BOARD

USB

DI
GI

TA
L

I/O

CO
UN

TE
R

ADwin I/O-CONNECTOR

DIGITAL I/O

COUNTER

USB
10-18VDC

ONPOWERGND

ADwin-light-16 , manual version 3.5, November 2013 A-13

AnnexADwin
ADwin-light-16 with DIO2 add-on since Rev. B2

L16-DIO2-PCI L16-DIO2-EURO

L16-DIO2-EXT: Front side L16-DIO2-EXT: Back side

ADwin I/O-
CONNECTOR

DIGITAL I/O

COUNTER

LS-BUS

AD
wi

n
 I/O

-C
ON

NE
CT

OR

ADwin-L16 + EXPANSION-BOARD

USB

DI
GI

TA
L

I/O

CO
UN

TE
R

LS
-B

US
ADwin I/O-CONNECTOR

DIGITAL I/O

COUNTER

USB ON

POWER 10-36VDC

GND
LS-BUS

Annex ADwin

A-14 ADwin-light-16 , manual version 3.5, November 2013

ADwin-light-16 with DIO3 add-on, Rev. B1

L16-DIO3-PCI L16-DIO3-EURO

L16-DIO3-EXT: Front side L16-DIO3-EXT: Back side

ADwin I/O-
CONNECTOR

DIGITAL I/O

ADwin-L16 + EXP-BRD

AD
wi

n
 I/O

-C
ON

NE
CT

OR

DI
GI

TA
L

I/O

USB

ADwin I/O-CONNECTOR

DIGITAL I/O

USB ONGND
10-18VDC
POWER

ADwin-light-16 , manual version 3.5, November 2013 A-15

AnnexADwin
ADwin-light-16 with DIO3 add-on since Rev. B2

L16-DIO3-PCI L16-DIO3-EURO

L16-DIO3-EXT: Front side L16-DIO3-EXT: Back side

LS
-B

us

ADwin I/O-
CONNECTOR

DIGITAL I/O

ADwin-L16 + EXP-BRD

AD
wi

n
 I/O

-C
ON

NE
CT

OR

DI
GI

TA
L

I/O

USB

LS
-B

US

ADwin-L16

ADwin I/O-CONNECTOR

DIGITAL I/O

USB ON

POWER 10-36VDC

GND
LS-BUS

Annex ADwin

A-16 ADwin-light-16 , manual version 3.5, November 2013

A.6 Baud rates for CAN bus
ADwin-light-16-DIO1 provides interfaces for the CAN bus. The following baud rates can be set:

Available Baud rates [Bit/s]
1000000.0000 888888.8889 800000.0000 727272.7273 666666.6667

615384.6154 571428.5714 533333.3333 500000.0000 470588.2353

444444.4444 421052.6316 400000.0000 380952.3810 363636.3636

347826.0870 333333.3333 320000.0000 307692.3077 296296.2963

285714.2857 266666.6667 250000.0000 242424.2424 235294.1176

222222.2222 210526.3158 205128.2051 200000.0000 190476.1905

181818.1818 177777.7778 173913.0435 166666.6667 160000.0000

156862.7451 153846.1538 148148.1481 145454.5455 142857.1429

140350.8772 133333.3333 126984.1270 125000.0000 123076.9231

121212.1212 117647.0588 115942.0290 114285.7143 111111.1111

106666.6667 105263.1579 103896.1039 102564.1026 100000.0000

98765.4321 95238.0952 94117.6471 90909.0909 88888.8889

87912.0879 86956.5217 84210.5263 83333.3333 81632.6531

80808.0808 80000.0000 78431.3725 76923.0769 76190.4762

74074.0741 72727.2727 71428.5714 70175.4386 69565.2174

68376.0684 67226.8908 66666.6667 66115.7025 64000.0000

63492.0635 62500.0000 61538.4615 60606.0606 60150.3759

59259.2593 58823.5294 57971.0145 57142.8571 55944.0559

55555.5556 54421.7687 53333.3333 52631.5789 52287.5817

51948.0519 51282.0513 50000.0000 49689.4410 49382.7160

48484.8485 47619.0476 47337.2781 47058.8235 46783.6257

45714.2857 45454.5455 44444.4444 43956.0440 43478.2609

42780.7487 42328.0423 42105.2632 41666.6667 41025.6410

40816.3265 40404.0404 40000.0000 39215.6863 38647.3430

38461.5385 38277.5120 38095.2381 37037.0370 36363.6364

36199.0950 35714.2857 35555.5556 35087.7193 34782.6087

34632.0346 34482.7586 34188.0342 33613.4454 33333.3333

33057.8512 32921.8107 32388.6640 32258.0645 32000.0000

31746.0317 31620.5534 31372.5490 31250.0000 30769.2308

30651.3410 30303.0303 30075.1880 29629.6296 29411.7647

29304.0293 29090.9091 28985.5072 28673.8351 28571.4286

28070.1754 27972.0280 27777.7778 27681.6609 27586.2069

27210.8844 27027.0270 26936.0269 26755.8528 26666.6667

26315.7895 26143.7908 25974.0260 25806.4516 25641.0256

25396.8254 25078.3699 25000.0000 24844.7205 24767.8019

24691.3580 24615.3846 24390.2439 24242.4242 24024.0240

23809.5238 23668.6391 23529.4118 23460.4106 23391.8129

23255.8140 23188.4058 22988.5057 22857.1429 22792.0228

22727.2727 22408.9636 22222.2222 22160.6648 22038.5675

21978.0220 21739.1304 21680.2168 21621.6216 21505.3763

21390.3743 21333.3333 21276.5957 21220.1592 21164.0212

21052.6316 20833.3333 20779.2208 20671.8346 20512.8205

20460.3581 20408.1633 20202.0202 20050.1253 20000.0000

19851.1166 19753.0864 19704.4335 19656.0197 19607.8431

19512.1951 19323.6715 19230.7692 19138.7560 19047.6190

18912.5296 18867.9245 18823.5294 18648.0186 18604.6512

18518.5185 18433.1797 18390.8046 18306.6362 18181.8182

ADwin-light-16 , manual version 3.5, November 2013 A-17

AnnexADwin
18140.5896 18099.5475 18018.0180 17857.1429 17777.7778

17738.3592 17582.4176 17543.8596 17429.1939 17391.3043

17316.0173 17241.3793 17204.3011 17094.0171 17021.2766

16949.1525 16913.3192 16842.1053 16806.7227 16771.4885

16666.6667 16632.0166 16563.1470 16528.9256 16460.9053

16393.4426 16326.5306 16260.1626 16227.1805 16194.3320

16161.6162 16129.0323 16000.0000 15873.0159 15810.2767

15779.0927 15686.2745 15625.0000 15594.5419 15503.8760

15473.8878 15444.0154 15384.6154 15325.6705 15238.0952

15180.2657 15151.5152 15122.8733 15094.3396 15065.9134

15037.5940 15009.3809 14842.3006 14814.8148 14705.8824

14652.0147 14571.9490 14545.4545 14519.0563 14492.7536

14414.4144 14336.9176 14311.2701 14285.7143 14260.2496

14184.3972 14109.3474 14035.0877 13986.0140 13937.2822

13913.0435 13888.8889 13840.8304 13793.1034 13722.1269

13675.2137 13605.4422 13582.3430 13559.3220 13513.5135

13468.0135 13445.3782 13377.9264 13333.3333 13289.0365

13223.1405 13157.8947 13136.2890 13114.7541 13093.2897

13071.8954 13008.1301 12987.0130 12903.2258 12882.4477

12820.5128 12800.0000 12759.1707 12718.6010 12698.4127

12578.6164 12558.8697 12539.1850 12500.0000 12422.3602

12403.1008 12383.9009 12345.6790 12326.6564 12307.6923

12288.7865 12195.1220 12158.0547 12121.2121 12066.3650

12030.0752 12012.0120 11994.0030 11922.5037 11904.7619

11851.8519 11834.3195 11764.7059 11730.2053 11695.9064

11661.8076 11627.9070 11611.0305 11594.2029 11544.0115

11494.2529 11477.7618 11428.5714 11396.0114 11379.8009

11363.6364 11347.5177 11299.4350 11220.1964 11204.4818

11188.8112 11111.1111 11080.3324 11034.4828 11019.2837

10989.0110 10943.9124 10928.9617 10884.3537 10869.5652

10840.1084 10810.8108 10796.2213 10781.6712 10752.6882

10695.1872 10666.6667 10638.2979 10610.0796 10582.0106

10540.1845 10526.3158 10457.5163 10430.2477 10416.6667

10389.6104 10335.9173 10322.5806 10296.0103 10269.5764

10256.4103 10230.1790 10204.0816 10101.0101 10088.2724

10062.8931 10025.0627 10012.5156 10000.0000 9937.8882

9925.5583 9876.5432 9852.2167 9828.0098 9803.9216

9791.9217 9768.0098 9756.0976 9696.9697 9685.2300

9661.8357 9615.3846 9603.8415 9569.3780 9523.8095

9456.2648 9433.9623 9411.7647 9400.7051 9367.6815

9356.7251 9324.0093 9302.3256 9291.5215 9259.2593

9227.2203 9216.5899 9195.4023 9153.3181 9142.8571

9090.9091 9070.2948 9049.7738 9039.5480 9009.0090

8958.5666 8928.5714 8918.6176 8888.8889 8879.0233

8869.1796 8859.3577 8771.9298 8743.1694 8714.5969

8695.6522 8658.0087 8648.6486 8620.6897 8602.1505

8592.9108 8556.1497 8547.0085 8510.6383 8483.5631

8474.5763 8465.6085 8456.6596 8421.0526 8403.3613

8385.7442 8333.3333 8281.5735 8264.4628 8255.9340

Available Baud rates [Bit/s]

Annex ADwin

A-18 ADwin-light-16 , manual version 3.5, November 2013

8230.4527 8205.1282 8196.7213 8163.2653 8130.0813

8113.5903 8105.3698 8097.1660 8088.9788 8080.8081

8064.5161 8000.0000 7976.0718 7944.3893 7936.5079

7905.1383 7843.1373 7812.5000 7804.8780 7797.2710

7774.5384 7751.9380 7736.9439 7729.4686 7714.5612

7692.3077 7662.8352 7655.5024 7619.0476 7590.1328

7575.7576 7561.4367 7547.1698 7532.9567 7518.7970

7469.6545 7441.8605 7421.1503 7407.4074 7400.5550

7386.8883 7352.9412 7326.0073 7285.9745 7272.7273

7259.5281 7246.3768 7187.7808 7168.4588 7142.8571

7136.4853 7130.1248 7111.1111 7098.4916 7092.1986

7054.6737 7017.5439 6993.0070 6956.5217 6944.4444

6926.4069 6902.5022 6896.5517 6861.0635 6820.1194

6808.5106 6802.7211 6791.1715 6779.6610 6734.0067

6688.9632 6683.3751 6666.6667 6611.5702 6578.9474

6568.1445 6562.7564 6557.3770 6535.9477 6530.6122

6493.5065 6456.8200 6451.6129 6441.2238 6410.2564

6400.0000 6379.5853 6349.2063 6324.1107 6289.3082

6274.5098 6269.5925 6250.0000 6245.1210 6211.1801

6172.8395 6163.3282 6153.8462 6144.3932 6102.2121

6060.6061 6046.8632 6037.7358 5997.0015 5961.2519

5952.3810 5925.9259 5895.3574 5865.1026 5847.9532

5818.1818 5797.1014 5772.0058 5747.1264 5714.2857

5702.0670 5681.8182 5649.7175 5614.0351 5610.0982

5555.5556 5521.0490 5517.2414 5464.4809 5434.7826

5423.7288 5376.3441 5333.3333 5291.0053 5245.9016

5208.3333 5161.2903 5079.3651 5000.0000

Available Baud rates [Bit/s]

ADwin-light-16 , manual version 3.5, November 2013 A-19

AnnexADwin
A.7 Table of figures

Fig. 1 – Concept of the ADwin systems . 3
Fig. 2 – Functional diagram (with USB interface) . 4
Fig. 3 – Variants . 5
Fig. 4 – Types of the ADwin-light-16 basic version . 5
Fig. 5 – Connectors ADwin-light-16 . 9
Fig. 6 – L16-EURO VG96 connector for power supply (female) 10
Fig. 7 – L16-EXT power connector (male) . 10
Fig. 8 – Pin assignment LS-BUS (female) . 10
Fig. 9 – Pin assignment inputs/outputs (female) . 10
Fig. 10 – Input circuitry of an analog input . 11
Fig. 11 – Zero offset in the standard setting of bipolar 10 Volt 12
Fig. 12 – Block diagram of the impulse/event counter 14
Fig. 13 – Counter instructions - short reference . 14
Fig. 14 – Circle model for interpretation of counter values 16
Fig. 15 – ADC hardware addresses of the control and data registers 18
Fig. 16 – DAC hardware addresses of the control and data registers 18
Fig. 17 – DIO hardware addresses of the control and data registers 18
Fig. 18 – Counter hardware addresses of the control and data registers . . 18
Fig. 19 – Block diagram of the L16-CO1 counter add-on 23
Fig. 20 – Pin assignment of L16-CO1 . 23
Fig. 21 – CO1 instructions, short reference . 24
Fig. 22 – CO1 hardware addresses of the control and data registers. 24
Fig. 23 – Block diagram of L16-DIO1 (with USB interface). 25
Fig. 24 – Overview of the L16-EURO-DIO1 with pin assignments
For other L16 variants, the plugs are named identical. 26
Fig. 25 – Position of the DIP switches on the DIO1 PCB 27
Fig. 26 – Configurations with Conf_DIO_E . 28
Fig. 27 – Block diagram of DIO1 counter . 29
Fig. 28 – DIO1 counter instructions - short reference 30
Fig. 29 – DIO1 hardware addresses of the control and data register 31
Fig. 30 – DIO1 Overview of CAN instructions . 39
Fig. 31 – Listing: Conversion of Gray code into binary code. 40
Fig. 32 – Block diagram of L16-DIO2 (with USB interface). 41
Fig. 33 – Overview of the L16-EURO-DIO2 with pin assignments 42
Fig. 34 – Configurations with Conf_DIO_E . 43
Fig. 35 – Block diagram of DIO2 counter . 44
Fig. 36 – DIO2 counter instructions - short reference 45
Fig. 37 – DIO2 hardware addresses of the control and data register 46
Fig. 38 – Listing: Conversion of Gray code into binary code. 51
Fig. 39 – Pin assignments. 53

Anne
x

Annex ADwin

A-20 ADwin-light-16 , manual version 3.5, November 2013

A.8 Index

Numerics
24 volt signals · 16

A
accessories · 58
ADC · 65

calibration · 19
conversion time · 17

ADC instructions
L16_Mode · 67
ReadADC · 68
Seq_Init · 69
Seq_Read · 72
Set_Mux · 73
Start_Conv · 74
Wait_EOC · 75

add-on
CAN bus · 36
counter, DIO1 · 29
Light 16-Boot · 57
Light 16-CO1 · 23
Light 16-DIO1 · 25
Light 16-DIO2/DIO3 · 41
Light 16-PWM1 · 53
PWM output · 54
SPI interface · 55
SSI decoder

DIO1 · 40
DIO2 · 51

ADwin system, booting · 8
ADwin, system concept · 2
analog in-/outputs

read converted value · 68
set multiplexer · 73
start a conversion · 74
Wait For End of conversion · 75

analog inputs
ADC:measure a channel · 65
input circuitry · 11
overview · 11
single measurement · 11

analog outputs
DAC: output one value · 64

B
Baud rates for CAN bus · 16
block diagram · 4
bootloader · 57

C
calibration · 19
CAN bus

Baud rates · 16
event · 38
example

cyclic read/send · 59

Anne
x

ADwin-light-16 , manual version 3.5, November 2013 A-21

AnnexADwin
interrupt controlled read · 61

global mask · 38
interface · 36

CAN instructions
CAN_Msg · 112
En_Interrupt · 114
En_Receive · 115
En_Transmit · 116
Get_CAN_Reg · 117
Init_CAN · 118
Read_Msg · 119
Read_Msg_Con · 121
Set_CAN_Baudrate · 123
Set_CAN_Reg · 124
Transmit · 125

CAN_Msg · 112
chassis temperature · 7
Clear_Digout · 78
CLK / DIR, counter · 32
clock and direction, counter · 32
Cnt_... · 96–109
Cnt_Clear · 96
Cnt_ClearEnable · 98
Cnt_Enable · 99
Cnt_GetStatus · 100
Cnt_InputMode · 102
Cnt_Latch · 103
Cnt_Mode · 104
Cnt_Read · 105
Cnt_ReadFLatch · 108
Cnt_ReadLatch · 106
Cnt_Set · 109
CO1 add-on · 23
Conf_DIO_E · 83
conversion

conversion time, ADC · 17
digit to voltage · 13
start of · 74

counter
base version · 14
clock and direction · 32
CO1 add-on · 23
DIO1 add-on · 25, 29
DIO2 add-on · 44
evaluate contents · 15
four edge evaluation · 33
impulse counter · 32
operating modes · 29
pulse width measurement · 35
PWM counter · 34

Annex ADwin

A-22 ADwin-light-16 , manual version 3.5, November 2013

D
DAC · 64
DAC · 64
DAC, calibration · 19
decoder, SSI

DIO1 · 40
DIO2 · 51

delivery options · 6
Dig_... · 78–93
Digin · 79
Digin_Long_E · 86
Digin_Word · 80
Digin_Word1_E · 84
Digin_Word2_E · 85
digit to voltage, conversion · 13
digital channels

clear one output · 78
DIO1 add-on · 28
DIO2 add-on · 44
DIO2-/DIO3 add-on · 43
event input · 13
overview · 13
read all inputs · 80
read one input · 79
set all outputs · 81
set one output · 82

Digout_Long_E · 93
Digout_Reset1_E · 87
Digout_Reset2_E · 88
Digout_Set1_E · 89
Digout_Set2_E · 90
Digout_Word · 81
Digout_Word1_E · 91
Digout_Word2_E · 92
DIO1 add-on

CAN bus · 36
counter · 29
digital channels · 28
functions · 25
SSI decoder · 40

DIO2 add-on
counter · 44
digital channels · 43
functions · 41
SSI decoder · 51

DIO3 add-on
digital channels · 43
functions · 41

direct register access · 17

ADwin-light-16 , manual version 3.5, November 2013 A-23

AnnexADwin
E

earth protectiom · 7
En_Interrupt · 114
En_Receive · 115
En_Transmit · 116
encoder

SSI, DIO1 · 40
SSI, DIO2 · 51

encoder, incremental · 33
event

CAN bus · 38
trigger input · 13

F
four edge evaluation · 33

G
Get_CAN_Reg · 117

H
hardware addresses · 17

I
impulse counter · 32
Init_CAN · 118
input circuitry · 11
inputs

analog, overview · 11
analog, voltage range · 12
digital · 13
external event · 13
open · 9

Installation
of hardware · 8
order of · 8
start · 1

instructions
analog in-/outputs · 63
CAN interface · 111
counter · 95
digital channels · 77
PWM outputs · 135
SPI interface · 146
SSI interface · 127

L
L16:set operating mode · 67
L16_Mode · 67
Light 16

accessories · 58
bootloader · 57
CO1 add-on · 23
delivery options · 6
DIO1 add-on · 25
DIO2-/DIO3 add-on · 41
overview · 4
PWM1 add-on · 53
standard delivery · 4

LS bus · 16

Annex ADwin

A-24 ADwin-light-16 , manual version 3.5, November 2013

M
multiplexer

allocation to ADC · 11
set · 73
settling time · 17

N
non-linearity · 13

O
operating environment · 7
operating mode L16 · 67
outputs

analog, voltage range · 12
digital · 13
PWM output · 54

P
principle scheme · 4
pulse width measurement · 35
PWM counter · 34
PWM output · 54
PWM_... · 136–144
PWM_Activate · 136
PWM_Enable · 137
PWM_Get_Status · 138
PWM_Init · 139
PWM_Latch · 141
PWM_Reset · 142
PWM_Standby_Value · 143
PWM_Write_Latch · 144
PWM1 add-on

functions · 53
PWM output · 54
SPI interface · 55

R
Read_Msg · 119
Read_Msg_Con · 121
ReadADC · 68
register, direct access · 17

ADwin-light-16 , manual version 3.5, November 2013 A-25

AnnexADwin
S

Seq_Init · 69
Seq_Read · 72
set operating mode L16 · 67
Set_CAN_Baudrate · 123
Set_CAN_Reg · 124
Set_Digout · 82
Set_Mux · 73
settling time, multiplexer · 17
shielding · 7
software · 59
SPI interface · 55
SPI_... · 147–156
SPI_Config · 147
SPI_Enable · 149
SPI_Get_MISO · 150
SPI_Set_MOSI · 151
SPI_Start · 152
SPI_Static_MISO · 153
SPI_Status · 155
SPI_Wait · 156
SSI decoder

DIO1 · 40
DIO2 · 51
SSI_... · 128–133
SSI_Mode · 128
SSI_Read · 129
SSI_Set_Bits · 130
SSI_Set_Clock · 131
SSI_Start · 132
SSI_Status · 133
standard delivery · 4
start of conversion · 74
Start_Conv · 74

T
technical data · 1
time-critical tasks · 17
Transmit · 125
trigger input · 13

V
voltage range · 12

W
Wait_EOC · 75

	ADwin-light-16
	Typographical Conventions
	1 Information about this manual
	2 System description
	2.1 ADwin system concept
	2.2 ADwin-light-16
	2.2.1 Ordering options (later upgrade not possible)
	2.2.2 Accessories

	3 Operating Environment
	4 Start-up of the Hardware
	5 Inputs and Outputs
	5.1 Analog Inputs and Outputs
	5.1.1 Analog Inputs
	5.1.2 Analog Outputs
	5.1.3 Calculation Basis

	5.2 Digital Inputs and Outputs
	5.3 Impulse/Event Counter
	5.3.1 Hardware
	5.3.2 Software
	5.3.3 Evaluation of the counter contents

	5.4 LS Bus
	5.5 Time-critical tasks

	6 Calibration
	7 CO1 Counter Add-On
	7.1 Hardware
	7.2 Programming

	8 DIO1 Add-On
	8.1 Digital Inputs and Outputs
	8.2 Counters
	8.2.1 Programming
	8.2.2 Operating mode impulse/event counting
	8.2.3 Operating mode pulse width and period duration measurement

	8.3 CAN-Bus
	8.3.1 Functions of the CAN controller

	8.4 SSI Decoder

	9 DIO2 / DIO3 Add-On
	9.1 Digital Inputs and Outputs
	9.2 Counters
	9.2.1 Programming
	9.2.2 Operating mode impulse/event counting
	9.2.3 Operating mode pulse width and period duration measurement

	9.3 SSI Decoder

	10 PWM1 Add-On
	10.1 PWM Output
	10.2 SPI Interface

	11 ADwin-light-16-Boot
	12 Accessories
	13 Software
	13.1 Example Program
	13.1.1 CAN: Cyclic Read and Send of Messages
	13.1.2 CAN: Interrupt-Controlled Reading

	13.2 Analog Inputs and Outputs
	DAC
	ADC
	L16_Mode
	ReadADC
	Seq_Init
	Seq_Read
	Set_Mux
	Start_Conv
	Wait_EOC

	13.3 Digital Inputs and Outputs
	Clear_Digout
	Digin
	Digin_Word
	Digout_Word
	Set_Digout
	Conf_DIO_E
	Digin_Word1_E
	Digin_Word2_E
	Digin_Long_E
	Digout_Reset1_E
	Digout_Reset2_E
	Digout_Set1_E
	Digout_Set2_E
	Digout_Word1_E
	Digout_Word2_E
	Digout_Long_E

	13.4 Counter
	Cnt_Clear
	Cnt_ClearEnable
	Cnt_Enable
	Cnt_GetStatus
	Cnt_InputMode
	Cnt_Latch
	Cnt_Mode
	Cnt_Read
	Cnt_ReadLatch
	Cnt_ReadFLatch
	Cnt_Set

	13.5 CAN interface
	CAN_Msg
	En_Interrupt
	En_Receive
	En_Transmit
	Get_CAN_Reg
	Init_CAN
	Read_Msg
	Read_Msg_Con
	Set_CAN_ Baudrate
	Set_CAN_Reg
	Transmit

	13.6 SSI interface
	SSI_Mode
	SSI_Read
	SSI_Set_Bits
	SSI_Set_Clock
	SSI_Start
	SSI_Status

	13.7 PWM Outputs
	PWM_Activate
	PWM_Enable
	PWM_Get_Status
	PWM_Init
	PWM_Latch
	PWM_Reset
	PWM_Standby_ Value
	PWM_Write_Latch

	13.8 SPI Interface
	SPI_Config
	SPI_Enable
	SPI_Get_MISO
	SPI_Set_MOSI
	SPI_Start
	SPI_Static_MISO
	SPI_Status
	SPI_Wait

	Annex
	A.1 Technical Data
	A.2 Hardware Addresses - General Overview
	A.3 Hardware-Revisions
	A.4 RoHS Declaration of Conformity
	A.5 Overview Connectors / Enclosures
	A.6 Baud rates for CAN bus
	A.7 Table of figures
	A.8 Index

